Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Extraction, continuous, aqueous

Now run in a solution of 52 g. (53-5 ml.) of pure diethyl carbonate (1) in 70 ml. of anhydrous ether, with rapid stirring, over a period of about one hour. A vigorous reaction sets in and the ether refluxes continually. When the diethyl carbonate has been added, heat the flask on a water bath with stirring for another hour. Pour the reaction mixture, with frequent shaking, into a 2 litre round-bottomed flask containing 500 g. of crushed ice and a solution of 100 g. of ammonium chloride in 200 ml. of water. Transfer to a separatory funnel, remove the ether layer, and extract the aqueous solution with two 176 ml. portions of ether. Dry... [Pg.258]

Vinylacetic acid. Place 134 g. (161 ml.) of allyl cyanide (3) and 200 ml. of concentrated hydrochloric acid in a 1-htre round-bottomed flask attached to a reflux condenser. Warm the mixture cautiously with a small flame and shake from time to time. After 7-10 minutes, a vigorous reaction sets in and the mixture refluxes remove the flame and cool the flask, if necessary, in cold water. Ammonium chloride crystallises out. When the reaction subsides, reflux the mixture for 15 minutes. Then add 200 ml. of water, cool and separate the upper layer of acid. Extract the aqueous layer with three 100 ml. portions of ether. Combine the acid and the ether extracts, and remove the ether under atmospheric pressure in a 250 ml. Claisen flask with fractionating side arm (compare Fig. II, 13, 4) continue the heating on a water bath until the temperature of the vapour reaches 70°. Allow the apparatus to cool and distil under diminished pressure (compare Fig. II, 20, 1) , collect the fraction (a) distilling up to 71°/14 mm. and (6) at 72-74°/14 mm. (chiefly at 72 5°/ 14 mm.). A dark residue (about 10 ml.) and some white sohd ( crotonio acid) remains in the flask. Fraction (6) weighs 100 g. and is analytically pure vinylacetic acid. Fraction (a) weighs about 50 g. and separates into two layers remove the water layer, dry with anhydrous sodium sulphate and distil from a 50 ml. Claisen flask with fractionating side arm a further 15 g. of reasonably pure acid, b.p. 69-70°/12 mm., is obtained. [Pg.465]

Introduce a solution of 100 g. of sodium bisulphite in 200 ml. of water and continue the stirring, preferably for 10 hours with exclusion of air. A thick precipitate separates after a few minutes. Collect the bisulphite compound by suction filtration, wash it with ether until colourless, and then decompose it in a flask with a lukewarm solution of 125 g. of sodium carbonate in 150 ml. of water. Separate the ketone layer, extract the aqueous layer with four 30 ml. portions of ether, dry the combined organic layers over anhydrous magnesium sulphate, remove the ether at atmospheric pressure, and distil the residual oil under reduced pressure from a Qaisen flask with fractionating side arm (Fig. II, 24, 5). Collect the cyclo-heptanone at 64r-65°/12 mm. the yield is 23 g. [Pg.947]

The depressed prices of most metals in world markets in the 1980s and early 1990s have slowed the development of new metal extraction processes, although the search for improved extractants continues. There is a growing interest in the use of extraction for recovery of metals from effluent streams, for example the wastes from pickling plants and electroplating (qv) plants (276). Recovery of metals from Hquid effluent has been reviewed (277), and an AM-MAR concept for metal waste recovery has recentiy been reported (278). Possible appHcations exist in this area for Hquid membrane extraction (88) as weU as conventional extraction. Other schemes proposed for effluent treatment are a wetted fiber extraction process (279) and the use of two-phase aqueous extraction (280). [Pg.81]

The most common types of emulsions consist of only two Hquids, water and an oil. An o/w emulsion consists of oil droplets dispersed in a continuous aqueous phase, and a w/o emulsion consists of water droplets dispersed in oil (Fig. 1). Occasionally inversion takes place an o/w emulsion changes into w/o emulsion and vice versa. More complex emulsions such as double emulsions are formed because the water droplets in a continuous oil phase themselves contain dispersed oil droplets (Fig. 2). Such oil-in-water-in-oil emulsions are noted as o/w/o. In the same manner a w/o/w emulsion may be formed, which finds use as a system for slow deHvery, extraction, etc (6,7). [Pg.196]

Ryon and Lowrie (U.S. AEC ORNL-3.381, 1960). Batch and continuous extraction of uranium from aqueous sulfate solutions into kerosine -t- amines, stripping of extract with aqueous sodium carbonate baffled vessels, turbine agitated. A detailed process study. [Pg.1467]

Extraction from Aqueous Solutions Critical Fluid Technologies, Inc. has developed a continuous countercurrent extraction process based on a 0.5-oy 10-m column to extract residual organic solvents such as trichloroethylene, methylene chloride, benzene, and chloroform from industrial wastewater streams. Typical solvents include supercritical CO9 and near-critical propane. The economics of these processes are largely driven by the hydrophihcity of the product, which has a large influence on the distribution coefficient. For example, at 16°C, the partition coefficient between liquid CO9 and water is 0.4 for methanol, 1.8 for /i-butanol, and 31 for /i-heptanol. [Pg.2003]

If copper is known to be absent or present only in negligible proportions, dilute the solution with water to 50 mL in a graduated flask, and continue as detailed below. Otherwise, transfer the solution to a small separatory funnel and add 5 mL of the diethylammonium diethyldithiocarbamate in chloroform reagent (diluted 1 20 with chloroform when required). Shake and run off the chloroform layer, extract the aqueous layer with successive 1 mL portions of the reagent until the chloroform layer is colourless finally, wash the aqueous layer with a few mL of chloroform. Dilute the aqueous solution with water to 50 mL in a graduated flask. [Pg.696]

The 2,2-dimethylpyrrolidine may be recovered from the aqueous distillate in two ways (a) the distillate can be extracted continuously with ether 3 or (6) the distillate can be acidified with hydrochloric acid and concentrated to dryness under reduced pressure to give crude 2,2-dimethylpyrrolidine hydrochloride. The base is then liberated by adding an excess of saturated aqueous sodium hydroxide solution. The oily layer is separated. The... [Pg.77]

Tantalum pentoxide [1314-61-0], Ta is prepared by calcining tantaUc acid or hydrated tantalum oxide [75397-94-3], Ta2Os H20, at temperatures between 800 and 1100°C. This oxide hydrate is produced by adding gaseous or aqueous ammonia to the solvent extraction produced aqueous tantalum solution in a continuous (29) or batch process. [Pg.327]


See other pages where Extraction, continuous, aqueous is mentioned: [Pg.37]    [Pg.152]    [Pg.355]    [Pg.491]    [Pg.567]    [Pg.718]    [Pg.785]    [Pg.808]    [Pg.849]    [Pg.937]    [Pg.756]    [Pg.327]    [Pg.1230]    [Pg.308]    [Pg.23]    [Pg.152]    [Pg.355]    [Pg.491]    [Pg.567]    [Pg.718]    [Pg.785]    [Pg.808]    [Pg.849]    [Pg.930]    [Pg.937]    [Pg.48]    [Pg.254]    [Pg.166]    [Pg.38]    [Pg.39]    [Pg.91]    [Pg.217]    [Pg.709]    [Pg.638]    [Pg.39]    [Pg.152]   


SEARCH



Aqueous extraction

Continuous extraction

© 2024 chempedia.info