Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Extractability testing extraction test

Trichloroethanoic acid, CCI3COOH. A crystalline solid which rapidly absorbs water vapour m.p. 58°C, b.p. 196-5" C. Manufactured by the action of chlorine on ethanoic acid at 160°C in the presence of red phosphorus, sulphur or iodine. It is decomposed into chloroform and carbon dioxide by boiling water. It is a much stronger acid than either the mono- or the dichloro-acids and has been used to extract alkaloids and ascorbic acid from plant and animal tissues. It is a precipitant for proteins and may be used to test for the presence of albumin in urine. The sodium salt is used as a selective weedkiller. [Pg.94]

After obtaining a set of fitted velocity versus time data for a particular test specimen, we can extract the contact force and depth of indentation by mathematical operations. The differentiation of the indenter velocity gives the equation for contact force while impact ... [Pg.241]

The aim of this work which enter in a research project on NDT, is to conceive a system of aid for interpretation and taking decisions, on imperfections in metallic fusion welds, we have studied and tested several segmentation techniques based on the two approaches ( contour and regions ). A quantitative analysis will be applied to extract some relatives geometricals parameters. To the sight of these characteristics, a first classification will be possible. [Pg.524]

Another phenomenon is so called two-side filling of one-side closed conical capillaries with liquid [5]. On the one hand the more penetrant is trapped by the defect the wider indication will appear. Contrariwise it is almost impossible to extract a penetrant from the completely filled surface defects by dry developer [6]. In this study we propose the theory of the phenomenon. Besides experimental results of the investigation of two-side filling with various penetrants of conical capillaries are presented. Practical recommendations to optimize liquid penetrant testing process are proposed. [Pg.613]

Inequality Re > H corresponds to the other case, when only a part of a penetrant is extracted by a developer and can form crack s indication. Such a situation can take place when one use kaolin powder as the developer. We measured experimentally the values Rj for some kaolin powders. For the developer s layer of kaolin powder, applied on tested surface. Re = 8 - 20 pm depending on powder s quality. [Pg.614]

Quantum chemical methods, exemplified by CASSCF and other MCSCF methods, have now evolved to an extent where it is possible to routinely treat accurately the excited electronic states of molecules containing a number of atoms. Mixed nuclear dynamics, such as swarm of trajectory based surface hopping or Ehrenfest dynamics, or the Gaussian wavepacket based multiple spawning method, use an approximate representation of the nuclear wavepacket based on classical trajectories. They are thus able to use the infoiination from quantum chemistry calculations required for the propagation of the nuclei in the form of forces. These methods seem able to reproduce, at least qualitatively, the dynamics of non-adiabatic systems. Test calculations have now been run using duect dynamics, and these show that even a small number of trajectories is able to produce useful mechanistic infomiation about the photochemistry of a system. In some cases it is even possible to extract some quantitative information. [Pg.311]

Like bromine, iodine is soluble in organic solvents, for example chloroform, which can be used to extract it from an aqueous solution. The iodine imparts a characteristic purple colour to the organic layer this is used as a test for iodine (p. 349). NB Brown solutions are formed when iodine dissolves in ether, alcohol, and acetone. In chloroform and benzene a purple solution is formed, whilst a violet solution is produced in carbon disulphide and some hydrocarbons. These colours arise due to charge transfer (p. 60) to and from the iodine and the solvent organic molecules. [Pg.320]

Mann, G., Prins, J., Hermans, J. Energetics of forced extraction of ligand Simulation studies of Xe in mutant T4 lysozyme as a simple test system. Bioohys. J., in preparation (1998)... [Pg.147]

The easiest way to extract a set of objects from the basic dataset, in order to compile a test set, is to do so randomly. This means that one selects a certain number of compounds from the initial (primary) dataset without considering the nature of these compounds. As mentioned above, this approach can lead to errors. [Pg.223]

The sodium fusion and extraction, if performed strictly in accordance with the above directions, should be safe operations. In crowded laboratories, however, additional safety may be obtained by employing the follow ing modification. Suspend the hard-glass test-tube by the rim through a hole in a piece of stout copper sheet (Fig. 69). Place 1 -2 pellets of sodium in the tube, and heat gently until the sodium melts. Then drop the organic compound, in small quantities at a time, down — =. the tube, allowing the reaction to subside after each addition before the next is made. (If the compound is liquid, allow two or three small drops to fall at intervals from a fine dropping-tube directly on to the molten sodium.) Then heat the complete mixture as before until no further reaction occurs. [Pg.322]

Now grind up the mixture of solution and glass in the mortar to ensure extraction of the sodium salts, and then filter. Divide the filtrate into three portions, reserving two portions for testing for halogens and sulphur. [Pg.322]

The isolation of an aliphatic acid from its aqueous solution, particularly in the presence of metallic salts, is a tedious operation (cf. p. 56), although a few such acids, e.g., succinic acid, can be extracted with ether. Since, however, a solution of an acid or one of Its salts is admirably suited for most of the tests in this series, the isolation of the free acid is rarely necessary except as a nieans of distinguishing (as in (i)) between aliphatic and aromatic members. [Pg.349]

First carry out a small-scale test, placing about 0 5 g. of the mixture in a test-tube, adding about 5 ml. of 10% aqueous NaOH solution, and shaking the mixture well. It will be readily seen whether the neutral substance (which remains undissolved) is solid or liquid. Then repeat the extraction on a largo scale as follows ... [Pg.398]

Mix 3 g. of starch well with loml. of water in a test-tube and pour the mixture into 90 ml. of boiling water contained in a 300 ml. conical flask, stirring at the same time. Cool to about 70 and then place in a water-bath maintained at 65-70 , but not higher. Now add 2-3 ml. of the malt extract prepared as above, mix well and allow the hydrolysis to proceed. Take a series of test -tubes and in each put 10 ml. of water and 2 drops of a 1 % iodine solution. At intervals of about 4 minutes (depending upon the activity of the enzyme solution), remove 1 ml. of the reaction mixture, cool and add it to one of the test-tubes and note the colour obtained. At the beginning of the experiment the colour will be blue due to the starch alone. As the reaction proceeds, the colour gradually becomes violet, reddish, yellowish and finally colourless. [Pg.513]


See other pages where Extractability testing extraction test is mentioned: [Pg.275]    [Pg.301]    [Pg.45]    [Pg.243]    [Pg.319]    [Pg.43]    [Pg.45]    [Pg.371]    [Pg.498]    [Pg.657]    [Pg.171]    [Pg.245]    [Pg.321]    [Pg.165]    [Pg.178]   
See also in sourсe #XX -- [ Pg.154 ]




SEARCH



Extractability tests

Extraction tests

Extractives tests

Test extract

© 2024 chempedia.info