Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Explosion protection electrical area classification

TGL Technische Gute- und Lieferbedingungen, Technical Regulations for Quality and Delivery) have defined the classification of hazardous areas (TGL 30042) and the requirements for construction and testing of explosion protected electrical equipment (mainly TGL 19491). [Pg.54]

With the introduction of safety standards lEC 61508 and 61511 (for process industries), there is a defined need for proper implementation of safety systems embedded into the main system. The safety life cycle has various phases. Phases 1 and 2 have been discussed at length in previous chapters (Chapter VI and Chapter VII and to a certain extent in Chapter IX). In this part, detailed discussions have been presented to include Phases 3—7, that is, from safety-related systems (SRSs) to modifications. This has been done purposefully so that prior to looking at the detailed implementation part of the standard, readers need to have some knowledge of the safety instrumented system (SIS), safety integrity level (SIL), and their implementation in various instrumentation components. So, this part of the discussions in conjunction with previous chapters will complete the topic of lEC 61508/61511. Safety instrumentation cannot be complete without discussions on explosion protection. With reference to lEC 60079-(0,10,14,15,17, etc.) and NEC (497,499,70, etc.), electrical area, classification of plant, explosion protection, etc. also have been included as part of this chapter to make the system complete in all respects. In view of this, these are presented in two sections. Section 1 for lEC implementation and Section 2 for explosion protection. [Pg.699]

Following the historical development of electrical engineering and explosion protection, zone classification was the objective of national standards and installation rules. Most of the leading industrial countries established an installation practice for chemical plants and the oil and gas industry with two or three zones for areas hazardous due to gas- or vapour-air mixtures and two zones for areas with hazardous dust-air mixtures. Apart from this philosophy, the coal mining industry in most countries tends to avoid an area classification and defines only one category of explosion protection ( firedamp-proof ). More recent standards or directives present a three-zone concept for areas endangered by combustible gas- (vapour-, mist-) air mixtures and dust-air mixtures in industrial plants (other than coal mines). [Pg.27]

The details discussed here shall be read in conjunction with Chapter X. In fact, engineering details for electrical enclosure class and area classification has been discussed in details in Chapter X. Here, supplementary information has been included to complete the discussion on the subject. Explosion proof and flame proof enclosures are the two most commonly used hazardous area protection techniques. [Pg.935]

Employers in control of hazardous areas need to determine the locations and extents of these zones in each of the hazardous areas, an exercise known as hazardous area classification. At present, in 2001, there is no specific legal duty to carry out hazardous area classification, apart from the general duties to carry out risk assessments and, in the context of mines, in Regulation 19 of the Electricity at Work Regulations. However, the Protection of Workers Potentially at Risk from Explosive Atmospheres Regulations expected to be enacted soon, will contain specific provisions relating to area classification and the need to record the area classification information in an explosion protection document. [Pg.257]

Having carried out an area classification exercise, the electrical equipment to be installed in the area must then be selected for its explosion protection properties. There is a range of options to choose from, with a variety of protection techniques employed. Each of the techniques, bar one, is described in detail in a European harmonised standard and is allocated a designation letter, mainly for ease of labelling. The following text summarises each of the techniques, and identifies its letter designation and appropriate construction standard. [Pg.261]

The use of electrical equipment in potentially flammable atmospheres should be avoided as far as possible. However, there will be many cases where electrical equipment must be used and, in these cases, the standards for the construction of the equipment should comply with the Equipment and Protective Systems Intended for Use in Potentially Explosive Atmospheres Regulations (known as ATEX) and details on the classification or zoning of areas are published by the British Standards Institution and the Health and Safety Executive. [Pg.242]

Where there are flammable materials that constitute an explosion risk, the locations in which the explosion risk exists are called hazardous areas. These areas are classified into zones according to the extent of the risk, using guidance published in BS EN 60079-10 1996 Electrical apparatus for explosive gas atmospheres. Part 10 Classification of hazardous areas. The zones are also defined in the European Directive on minimum requirements for improving the safety and health protection of workers potentially at risk from explosive atmospheres. The zones are ... [Pg.257]

Fusible Link a mechanical release device actiwited by the heat effects of a fire. It usually consist of two pieces of metal joined by a low melting solder. Fusible links are manufactured as various incremental temperature ratings and are subjected to varying normal maximum tension. When installed and the fixed temperature is reached, the solder melts and the two metal parts separate, initiating the desired actions Hazard Analysis the systematic identification of chemical or physical characteristics and/ or processing conditions and/or operating conditions that could lead to undesired events Hazardous Area, Electrical a US classification for an area in which explosive gas/air mixtures are, or may be expected to be, present in quantities such as to require special precautions for the construction and use of electrical apparatus HAZOP an acronym for Hazard and Operability study, which is a qualitative process risk analysis tool used to identify hazards and evaluate if suitable protective arrangements are in place if the process were not to perform as intended and unexpected consequences were to result... [Pg.446]


See other pages where Explosion protection electrical area classification is mentioned: [Pg.268]    [Pg.233]    [Pg.372]    [Pg.786]    [Pg.610]    [Pg.790]    [Pg.738]    [Pg.751]    [Pg.72]   
See also in sourсe #XX -- [ Pg.746 , Pg.756 ]




SEARCH



Areas classification

Electrical area classification

Electrical protection

Electricity explosions

Explosion electrical

Explosion protection

Explosive area

Explosives classification

Protective classification

© 2024 chempedia.info