Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Exploiting the Rule

Have the regulators stolen the march on us Is 21 CFR 11a Trojan horse for the industry By including electronic records in the regulation, has the baby been strangled at birth  [Pg.465]

The rule is very flexible. The preamble is littered with examples to indicate how the FDA has avoided being presaiptive. Many of the questions asked seek to restore some of this prescription. This should be resisted. The industry has a great deal of expertise in the pragmatic interpretation of the regulations and should use it to exploit the rule. [Pg.465]

If we abuse the freedom inherent in the rule, we may well live to regret it. Throughout the preamble, there are a number of references to the need for further legislation. Whilst the FDA has no intention of doing so at present, it will not hesitate to do so in the future if it feels this is necessary to allow it to do its job. We wish to avoid this at all costs. If we comply responsibly (and dialogue with the FDA is also encouraged in the preamble), then I believe a win-win situation will evolve. [Pg.465]

I do not believe the rule is a Trojan horse. Whilst it is true that there are a number of things in the rule that the industry does not welcome, particularly the problems associated with existing systems, these are temporary difficulties and of little significance for the long-term future of the industry. [Pg.465]

It is easy to forget the most important point, which is that electronic signatures are now enabled. Many of the ideas and efficiencies that we have [Pg.465]


Corres and coworkers demonstrated a couple pH sensors realized by ESA deposition of nanostructured polymeric materials. Those sensors represented a truly engineered design exploiting the rules of the modal transition64. [Pg.71]

With appropriate control of the reaction conditions, and in particular by exploiting the rules of steric control described in Sect. 2.4, the Piers-Rubinsztajn reaction can be employed to synthesize well-defined complex 3D siloxane architectures. Small, readily available alkoxysilanes and silicones can be rapidly assembled into MDTQ [5] silicones (Fig. 8) in our work, metathesis was not observed [40]. These structures would be exceptionally difficult to synthesize using traditional means because of the susceptibility of siloxane bonds to strong electrophiles and nucleophiles, especially in the presence of water, and the ability of silicones to undergo redistribution under acidic or basic conditions. [Pg.172]

By exploiting the fact that such rules obey an additive superposition principle -namely, that if >add is the global transition function, then + ob) = (<7a) +... [Pg.45]

Despite being notoriously difficult to analyze formally, the behavior of general CA rules is nonetheless often amenable to an almost complete mathematical characterization. In this section we look at a simple method that exploits the properties of certain implicit deterministic structures of elementary one-dimensional rules to help determine the existence of periodic temporal sequences, rule inverses and homogeneous states. Additional details appear in [jen86a] and[jen86b]. [Pg.228]

Arbitrarily setting the zero value of energy by F(0,0,0,0) = 0, and exploiting the fact that 4> is obtained by a sum over sites , Takesue is able to explicitly compute all of the additive invariants cf the form shown in equation 8.15 for all 47 of 88 representative ERCA rules that possess such invariants (takes89j. He finds, in particular, that 22, 36/ , 73/ , and 90/ are the only ERCA rules that have an invariant of the Pomeau variety (equation 8.10). A sampling of some other types of invariants found in other rules in provided in table 8.1 (from [takes89]). [Pg.381]

Molecular designers can exploit these rules and design chemicals that demonstrate characteristics that are likely to lead to decreased absorption and therefore minimize toxicity. Molecules that are permanently charged at physiological pH like the neurotoxin curare or... [Pg.33]

Whilst s-PB, i-PB, PG, and PW are all insoluble in water, PX is slightly soluble in its pure (golden yellow) form (indeed, the electrodeposition technique depends on the solubility of the [FeniFein(CN)6]0 complex). This implies a positive potential limit of about +0.9 V for a high write-erase efficiency in contact with water. Although practical ECDs based on PB have primarily exploited the PB PW transition, this does not rule out the prospect of four-color PB... [Pg.592]

More basically, LB with its collision rules is intrinsically simpler than most FV schemes, since the LB equation is a fully explicit first-order discretized scheme (though second-order accurate in space and time), while temporal discretization in FV often exploits the Crank-Nicolson or some other mixed (i.e., implicit) scheme (see, e.g., Patankar, 1980) and the numerical accuracy in FV provided by first-order approximations is usually insufficient (Abbott and Basco, 1989). Note that fully explicit means that the value of any variable at a particular moment in time is calculated from the values of variables at the previous moment in time only this calculation is much simpler than that with any other implicit scheme. [Pg.177]

Non-linear concentration/response relationships are as common in pesticide residue analysis as in analytical chemistry in general. Although linear approximations have traditionally been helpful the complexity of physical phenomena is a prime reason that the limits of usefulness of such an approximation are frequently exceeded. In fact, it should be regarded the rule rather than the exception that calibration problems cannot be handled satisfactorily by linear relationships particularly as the dynamic range of analytical methods is fully exploited. This is true of principles as diverse as atomic absorption spectrometry (U. X-ray fluorescence spectrometry ( ), radio-immunoassays (3), electron capture detection (4) and many more. [Pg.167]

The organization of this chapter is as follows. In Sect. 7.1 wo carefully define the continuous chain limit and we introduce the appropriate modification of the Feynman rules. We. then establish the two parameter scheme by dimensional analysis. Section 7.2 is devoted to the question whether the continuous chain limit exists. The analysis is presented on the diagrammatic level. It exploits the field theoretic representation, which also is derived on the level of diagrams. All the analysis is based on the cluster expansion. Extension to the loop expansion is not difficult, but will not be considered, since it is not needed in the sequel. [Pg.105]


See other pages where Exploiting the Rule is mentioned: [Pg.462]    [Pg.465]    [Pg.462]    [Pg.465]    [Pg.9]    [Pg.514]    [Pg.38]    [Pg.237]    [Pg.360]    [Pg.76]    [Pg.47]    [Pg.23]    [Pg.355]    [Pg.129]    [Pg.301]    [Pg.273]    [Pg.278]    [Pg.141]    [Pg.327]    [Pg.185]    [Pg.110]    [Pg.27]    [Pg.323]    [Pg.204]    [Pg.116]    [Pg.134]    [Pg.160]    [Pg.367]    [Pg.371]    [Pg.299]    [Pg.53]    [Pg.38]    [Pg.39]    [Pg.286]    [Pg.395]    [Pg.291]    [Pg.93]    [Pg.151]    [Pg.358]    [Pg.6]    [Pg.581]   


SEARCH



Exploit

Exploitation

Exploiting

The rule

© 2024 chempedia.info