Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Experimental models, development

Regarding the prevalence of pectinolytic enzymes in the soft rot symptoms, it is noteworthy that the experimental model developed on African violets stresses the dynamic aspect of the disease and illustrates a number of points which have long been questioned. [Pg.879]

The reliability of the in silico models will be improved and their scope for predictions will be broader as soon as more reliable experimental data are available. However, there is the paradox of predictivity versus diversity. The greater the chemical diversity in a data set, the more difficult is the establishment of a predictive structure-activity relationship. Otherwise, a model developed based on compounds representing only a small subspace of the chemical space has no predictivity for compounds beyond its boundaries. [Pg.616]

Kelkar and McCarthy (1995) proposed another method to use the feedforward experiments to develop a kinetic model in a CSTR. An initial experimental design is augmented in a stepwise manner with additional experiments until a satisfactory model is developed. For augmenting data, experiments are selected in a way to increase the determinant of the correlation matrix. The method is demonstrated on kinetic model development for the aldol condensation of acetone over a mixed oxide catalyst. [Pg.143]

In another approach, which was previously mentioned, the mass thickness, or depth distribution of characteristic X-ray generation and the subsequent absorption are calculated using models developed from experimental data into a < )(p2) function. Secondary fluorescence is corrected using the same i flictors as in ZAP. The (pz) formulation is very flexible and allows for multiple boundary conditions to be included easily. It has been used successfully in the study of thin films on substrates and for multilayer thin films. [Pg.132]

Colenbrander, G. W. and J. S. Puttock, 1983, Dense Gas Dispersion Behavior Experimental Observations and Model Developments, International Symposium on Loss Prevention and Safety Promotion in the Process Industries, Harrogate, England, September. [Pg.476]

The shock-compression events are so extreme in intensity and duration, and remote from direct evaluation and from other environments, that experiment plays a crucial role in verifying and grounding the various theoretical descriptions. Indeed, the material models developed and advances in realistic numerical simulation are a direct result of advances in experimental methods. Furthermore, the experimental capabilities available to a particular scientist strongly control the problems pursued and the resulting descriptions of shock-compressed matter. Given the decisive role that experimental methods play, it is essential that careful consideration be given to their characteristics. [Pg.53]

The various copolymerization models that appear in the literature (terminal, penultimate, complex dissociation, complex participation, etc.) should not be considered as alternative descriptions. They are approximations made through necessity to reduce complexity. They should, at best, be considered as a subset of some overall scheme for copolymerization. Any unified theory, if such is possible, would have to take into account all of the factors mentioned above. The models used to describe copolymerization reaction mechanisms arc normally chosen to be the simplest possible model capable of explaining a given set of experimental data. They do not necessarily provide, nor are they meant to be, a complete description of the mechanism. Much of the impetus for model development and drive for understanding of the mechanism of copolymerization conies from the need to predict composition and rates. Developments in models have followed the development and application of analytical techniques that demonstrate the inadequacy of an earlier model. [Pg.337]

The described experimental rig for the anionic polymerisation of dienes has been shown to behave as an ideal CSTR. The mathematical model developed allows the prediction of the MWD at future points in the reactor history, once suitable kinetic parameters have been estimated. [Pg.294]

Comparison of experimental data Ifom the optimal feeding program with simulation r ults has demonstrated much lower PAC concentrations than those predicted by the model (e. g., 300 mM compared to 700 mM, respectively at 54 h) with the comparative difference confirming the need for further model development. [Pg.29]

The kinetic parameters estimated by the experimental data obtained frmn the honeycomb reactor along with the packed bed flow reactor as listed in Table 1 reveal that all the kinetic parameters estimated from both reactors are similar to each other. This indicates that the honeycomb reactor model developed in the present study can directly employ intrinsic kinetic parameters estimated from the kinetic study over the packed-bed flow reactor. It will significantly reduce the efibrt for predicting the performance of monolith and estimating the parameters for the design of the commercial SCR reactor along with the reaction kinetics. [Pg.447]

The molecular orbital model developed in this section is more elaborate than the localized bonds described earlier in this chapter. Is this more complicated model necessary to give a thorough picture of chemical bonding Experimental evidence for molecular oxygen suggests that the answer is yes. [Pg.699]

In parallel with the identification of distinct transporters for GABA there has been continued interest in the development of selective blockers of these transporters and the therapeutic potential that could result from prolonging the action of synaptically released GABA. It has been known for a long time that certain pro-drugs of nipecotic add (e.g. nipecotic acid ethyl ester) are able to cross the blood-brain barrier and are effective anticonvulsants in experimental models of epilepsy. More recently, several different systemically active lipophillic compounds have been described that act selectively on GAT-1, GAT-2 or GAT-3 (Fig. 11.4). Of these, tiagabine (gabitiil), a derivative of nipecotic acid that acts preferentially on GAT -1, has proved clinically useful in cases of refractory epilepsy. [Pg.231]

This is, beyond all doubt, the most important process and the only one which has been already tackled with theoretically. Nevertheless, the prediction given by the classical overbarrier transition model is not correct for this collision [9] and the modified multichaimel Landau-Zener model developed by Boudjema et al. [34] caimot explain the experimental results for collision velocities higher than 0.2 a.u.. With regard to the collision energy range, we have thus performed a semi-classical [35] collisional treatment... [Pg.341]

Fortunately the microinterfaces between two immiscible electrolytes seem to be a very useful experimental model of small liquid-liquid systems. The formation and investigation of the micro-ITIES is continuously perfected [74-76]. The smallest diameter so far achieved was 5 jiva. The main utilization of micro-ITIES is developed, in parallel with application of ultramicroelectrodes. [Pg.36]

This result was taken as an experimental eonfirmation of the model developed by Sehmiekler [7]. However, it appeared somehow eontradictory with other results obtained with SECM. It was also suggested that eoneentration polarization phenomena occurring at the aqueous side are negligible as the whole potential drop is presumably developed in the benzene phase. This assumption can be qualitatively verified by evaluating a simplified expression for the potential distribution based on a back-to-back diffuse double layer [40,113],... [Pg.210]

The numerical model developed to treat this problem [49], involves the parameters K, y, and the normalized tip-interface distance, L = d/a. To develop an understanding of the factors governing the SECM feedback response, which is of importance in the interpretation of experimental data, we briefly describe the effect of these parameters on the tip current. A key aim is to define precisely the conditions under which the simpler constant-composition model Eqs. (l)-(5) can be used. [Pg.300]

Hydrogenation of lactose to lactitol on sponge itickel and mtheitium catalysts was studied experimentally in a laboratory-scale slurry reactor to reveal the true reaction paths. Parameter estimation was carried out with rival and the final results suggest that sorbitol and galactitol are primarily formed from lactitol. The conversion of the reactant (lactose), as well as the yields of the main (lactitol) and by-products were described very well by the kinetic model developed. The model includes the effects of concentrations, hydrogen pressure and temperature on reaction rates and product distribution. The model can be used for optinuzation of the process conditions to obtain highest possible yields of lactitol and suppressing the amounts of by-products. [Pg.113]


See other pages where Experimental models, development is mentioned: [Pg.124]    [Pg.240]    [Pg.492]    [Pg.52]    [Pg.341]    [Pg.930]    [Pg.4]    [Pg.161]    [Pg.468]    [Pg.337]    [Pg.211]    [Pg.389]    [Pg.15]    [Pg.124]    [Pg.296]    [Pg.306]    [Pg.30]    [Pg.145]    [Pg.570]    [Pg.154]    [Pg.23]    [Pg.122]    [Pg.648]    [Pg.121]    [Pg.45]    [Pg.201]    [Pg.309]    [Pg.110]    [Pg.188]    [Pg.240]    [Pg.240]    [Pg.180]    [Pg.245]   
See also in sourсe #XX -- [ Pg.42 ]




SEARCH



Experimental Modeling

Experimental models

Model developed

Modelling experimental

© 2024 chempedia.info