Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Expander parameters

They take the form D-j = d + a-j k where a-j are constants depending only on the cell and d is an expandable parameter giving the rate of turbulent diffusion. [Pg.174]

Of particular interest has been the study of the polymer configurations at the solid-liquid interface. Beginning with lattice theories, early models of polymer adsorption captured most of the features of adsorption such as the loop, train, and tail structures and the influence of the surface interaction parameter (see Refs. 57, 58, 62 for reviews of older theories). These lattice models have been expanded on in recent years using modem computational methods [63,64] and have allowed the calculation of equilibrium partitioning between a poly-... [Pg.399]

Assume that the free energy can be expanded in powers of the magnetization m which is the order parameter. At zero field, only even powers of m appear in the expansion, due to the up-down symmetry of the system, and... [Pg.536]

P is the critical exponent and t denotes the reduced distance from the critical temperature. In the vicinity of the critical point, the free energy can be expanded in tenns of powers and gradients of the local order parameter m (r) = AW - I bW ... [Pg.2370]

A different approach is to represent the wavepacket by one or more Gaussian functions. When using a local harmonic approximation to the trae PES, that is, expanding the PES to second-order around the center of the function, the parameters for the Gaussians are found to evolve using classical equations of motion [22-26], Detailed reviews of Gaussian wavepacket methods are found in [27-29]. [Pg.253]

Although all of the nuclear coordinates participate in this kinetic energy operator, and in our previous discussions, all of the nuclear coordinates are expanded, with respect to an equivalent position, in power series of the parameter K, here in the specific case of a diatomic molecule, we found that only the R coordinate seems to have an equilibrium position in the molecular fixed coordinates. This means that actually we only have to, or we can only, expand the R coordinate, but not the other coordinates, in the way that... [Pg.408]

Series expansion Smith and van Gunsteren [4] investigated the first approach expanding the free energy as a function of the coupling parameter A into a T ylor series around a given reference state, A = 0,... [Pg.151]

Using the expanded determinants from Problem 6, write explicit algebraic expressions for the three minimization parameters a, b, and c for a parabolic curve fit. [Pg.79]

By treating H as of zeroth order (in the field strength Ao ), expanding P order-byorder in the field-strength parameter ... [Pg.377]

Although the emphasis in these last chapters is certainly on the polymeric solute, the experimental methods described herein also measure the interactions of these solutes with various solvents. Such interactions include the hydration of proteins at one extreme and the exclusion of poor solvents from random coils at the other. In between, good solvents are imbibed into the polymer domain to various degrees to expand coil dimensions. Such quantities as the Flory-Huggins interaction parameter, the 0 temperature, and the coil expansion factor are among the ways such interactions are quantified in the following chapters. [Pg.496]

Next we consider the situation of a coil which is unperturbed in the hydro-dynamic sense of being effectively nondraining, yet having dimensions which are perturbed away from those under 0 conditions. As far as the hydrodynamics are concerned, a polymer coil can be expanded above its random flight dimensions and still be nondraining. In this case, what is needed is to correct the coil dimension parameters by multiplying with the coil expansion factor a, defined by Eq. (1.63). Under non-0 conditions (no subscript), = a(rg)Q therefore under these conditions we write... [Pg.616]

Materials suitable as filter aids include diatomaceous earth, expanded perilitic rock, asbestos, ceUulose, nonactivated carbon, ashes, ground chalk, or mixtures of those materials. The amount of body feed is subject to optimisa tion, and the criterion for the optimisa tion depends on the purpose of the filtration. Maximum yield of filtrate per unit mass of filter aid is probably most common but longest cycle, fastest flow, or maximum utilisation of cake space are other criteria that requite a different rate of body feed addition. The tests to be carried out for such optimisation normally use laboratory or pilot-scale filters, and must include variation of the filtration parameters such as pressure or cake thickness in the optimisation. [Pg.390]

In addition, most devices provide operator control of settings for temperature and/or response slope, isopotential point, zero or standardization, and function (pH, mV, or monovalent—bivalent cation—anion). Microprocessors are incorporated in advanced-design meters to faciHtate caHbration, calculation of measurement parameters, and automatic temperature compensation. Furthermore, pH meters are provided with output connectors for continuous readout via a strip-chart recorder and often with binary-coded decimal output for computer interconnections or connection to a printer. Although the accuracy of the measurement is not increased by the use of a recorder, the readabiHty of the displayed pH (on analogue models) can be expanded, and recording provides a permanent record and also information on response and equiHbrium times during measurement (5). [Pg.467]

Physical Properties. LLDPE is a sernicrystaUine plastic whose chains contain long blocks of ethylene units that crystallize in the same fashion as paraffin waxes or HDPE. The degree of LLDPE crystallinity depends primarily on the a-olefin content in the copolymer (the branching degree of a resin) and is usually below 40—45%. The principal crystalline form of LLDPE is orthorhombic (the same as in HDPE) the cell parameters of nonbranched PE are a = 0.740 nm, b = 0.493 nm, and c (the direction of polymer chains) = 0.2534 nm. Introduction of branching into PE molecules expands the cell slightly thus a increases to 0.77 nm and b to around 0.50 nm. [Pg.395]

The expanded version of the van Deem ter equation is used to help understand the relationships between the packing parameters and the gas flow. [Pg.108]

Owing to the original determination from uv—vis spectral solvatochromic shifts, 7T, B, and are called solvatochromic parameters. General rules for estimation of these variables have been proposed (258). Examples of individual parameter investigations are available (260,261). As previously mentioned, individual LEER—LSER studies are performed on related materials. A common method to link these individual studies to group contribution methods, and thereby expand the appHcabiUty, is by expansion of solvatochromic parameters to log—linear relationships, such as... [Pg.254]

The use of PB modeling by practitioners has been hmited for two reasons. First, in many cases the kinetic parameters for the models have been difficult to predict and are veiy sensitive to operating conditions. Second, the PB equations are complex and difficult to solve. However, recent advances in understanding of granulation micromechanics, as well as better numerical solution techniques and faster computers, means that the use of PB models by practitioners should expand. [Pg.1903]

Analysts must recognize that the end use as well as the uncertainty determines the value of measurements. While the operators may pay the most attention to one set of measurements in making their decisions, another set may be the proper focus for model development and parameter estimation. The predilec tion is to focus on those measurements that the operators Believe in or that the designers/con-trollers originally believed in. While these may not be misleading, they are usually not optimal, and analysts must consciously expand their vision to include others. [Pg.2550]


See other pages where Expander parameters is mentioned: [Pg.162]    [Pg.705]    [Pg.297]    [Pg.78]    [Pg.379]    [Pg.231]    [Pg.162]    [Pg.705]    [Pg.297]    [Pg.78]    [Pg.379]    [Pg.231]    [Pg.503]    [Pg.508]    [Pg.643]    [Pg.1492]    [Pg.2341]    [Pg.2415]    [Pg.356]    [Pg.402]    [Pg.182]    [Pg.117]    [Pg.182]    [Pg.161]    [Pg.190]    [Pg.431]    [Pg.409]    [Pg.369]    [Pg.117]    [Pg.118]    [Pg.414]    [Pg.418]    [Pg.193]    [Pg.64]    [Pg.252]    [Pg.254]    [Pg.725]    [Pg.1635]    [Pg.2216]   
See also in sourсe #XX -- [ Pg.162 ]




SEARCH



Experimental Designs Part 4 - Varying Parameters to Expand the Design

© 2024 chempedia.info