Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Exocyclic reactions cycloadditions

Exocyclic double bonds at cyclic systems, which contain cross-conjugated double bonds, cannot be considered as a subgroup of radialenes and shall therefore be treated separately, although many of the structural features are comparable. However, in these systems the exocyclic and endocyclic double bonds are competing with each other as sites for Diels-Alder reactions, cycloadditions and electrophilic attacks. The double bond character of both, as measured by its distance, can provide some evidence for the selec-tivities. If no strain and conjugation are expected, the double bonds should be comparable... [Pg.50]

One strategy to prepare saturated 5(4//)-oxazolones from unsaturated oxazo-lones takes advantage of the reactivity of the exocyclic double bond. In this context, numerous reactions have been explored including reductions, Michael reactions, cycloaddition reactions, and many others. These reactions will be discussed in the context of the reactivity of the exocyclic double bond of the unsaturated oxazolones and will be described in Section 7.4.3. [Pg.177]

Benzo[Z)]furans and indoles do not take part in Diels-Alder reactions but 2-vinyl-benzo[Z)]furan and 2- and 3-vinylindoles give adducts involving the exocyclic double bond. In contrast, the benzo[c]-fused heterocycles function as highly reactive dienes in [4 + 2] cycloaddition reactions. Thus benzo[c]furan, isoindole (benzo[c]pyrrole) and benzo[c]thiophene all yield Diels-Alder adducts (137) with maleic anhydride. Adducts of this type are used to characterize these unstable molecules and in a similar way benzo[c]selenophene, which polymerizes on attempted isolation, was characterized by formation of an adduct with tetracyanoethylene (76JA867). [Pg.67]

Amouri and coworkers also demonstrated that the nucleophilic reactivity of the exocyclic carbon of Cp Ir(T 4-QM) complex 24 could be utilized to form carbon -carbon bonds with electron-poor alkenes and alkynes serving as electrophiles or cycloaddition partners (Scheme 3.17).29 For example, when complex 24 was treated with the electron-poor methyl propynoate, a new o-quinone methide complex 28 was formed. The authors suggest that the reaction could be initiated by nucleophilic attack of the terminal carbon of the exocyclic methylene group on the terminal carbon of the alkyne, generating a zwitterionic oxo-dienyl intermediate, followed by proton transfer... [Pg.78]

Despite the study of cycloadditions to alkylidenecyclopropanes being far from fully exploited, the results accumulated in the literature are enough for a comprehensive review which will present the state of the art. The present review will deal with all the processes of cycloadditions, without discriminating between the nature, concerted or stepwise, of the processes. It will cover those reactions which involve exclusively the exocyclic double bond of methylenecye-lopropane and alkylidenecyclopropanes in the formation of three-, four-, five-and six-membered rings. [Pg.12]

A positive feature of the reaction is that nitrile oxides are more regioselective, in cycloadditions to methylenecyclopropanes, compared to nitrones. Only traces (up to 5%) of the 4-spirocyclopropane regioisomers are generally observed with methylenecyclopropanes unsubstituted on the exocyclic double bond. The yields are only moderate, but higher with more stable nitrile oxides (Table 27, entries 5, 6, 10-12). [Pg.58]

The only reported example of [2 + 1] cycloaddition to methyleneeyclo-propanes involving phosphorus consists in the addition of iminophosphanes 643 and 644 to 1 and 285. The reaction was carried out at room temperature, and readily gave iminophosphaspiro[2.2]pentanes 645 and 646 in moderate yields (Scheme 100) [178]. The major diastereoisomer of 646 selectively crystallized (38% yield) from the reaction mixture and its structure was confirmed by X-ray analysis [178]. This diastereoisomer derived from the attack of the exocyclic double bond by phosphorus on the opposite side of the phenyl substituent. [Pg.100]

The 1,3-dipolar cycloaddition reactions of the chiral 3-benzoyl-4-methylene-2-phenyloxazolidin-5-one 118 and nitrile oxides RCNO (R = Ph, Me) had the expected stereochemistry, addition of the 1,3-dipole having occurred from the less hindered n-face of the exocyclic methylene of 118 (282). [Pg.43]

Pyramidalization is thought not to be relevant to the different face selectivity of 4 + 2 cycloaddition reactions of diene systems exocyclic to the bicyclo[2,2,l]heptane structure, because selectivity persists for additions to dienes which are not significantly distorted (Gallucci et al., 1985). [Pg.130]

Dipolar cycloadditions to electron-deficient allenes are not regioselective, taking place at the electron-poor C=C bond, in all cases. For example, the reaction of 372 with nitrile oxide 378 furnishes a mixture of products 379-383 [356], Obviously, 379, 380 and 381 result from different [2 + 3]-cycloadditions followed by tautomer-ism, whereas 382 and 383 are formed from the primary products of the 1,3-dipolar cydoaddition via addition of a second equivalent of 378 to the remaining exocyclic C—C bond. [Pg.408]

Niggli and Neuenschwander294 studied the reaction of fulvene (461) with cyclopen-tadiene. The main product fraction consisted of three 1 1 adducts, as illustrated in equation 138. Diels-Alder Adducts 462 and 463 resulted from attack of cyclopentadiene at the endocyclic and exocyclic double bonds of fulvene, respectively. The formation of 464 was rationalized by a [6 + 4] cycloaddition reaction followed by two [1,5] hydrogen shifts. It was stated that due to the absence of electron-donating and electron-withdrawing groups on both triene and diene, fulvene may have reacted via its HOMO as well as its LUMO. [Pg.438]

Malacria and coworkers346 prepared phyllocladane and kaurane types of diterpenes by means of [3 + 2]/[2 + 2 + 2]/[4 + 2] cascade reaction sequences. A representative example of such a reaction sequence has been outlined in equation 171. The five-membered ring of 598 was built by a 1,3-dipolar cycloaddition between 596 and an all-carbon 1,3-dipole generated from 597. The reaction of 598b with 568h afforded benzocyclobutene 599. The intramolecular [4 + 2] cycloaddition afforded diastereomers 600 and 601 in a 5 1 ratio. It is noteworthy that the exocyclic double bond in 598b neither participates in the [2 + 2 + 2] cycloaddition reaction nor isomerizes under the reaction conditions applied. [Pg.464]

Blechert and co-workers successfully employed the [4 -I- 2] cycloaddition for the transformation of indole derivatives [79-81], For instance, using 2-vinyl-indole derivatives as heterodienes, (3-acceptor-substituted cyclic and acyclic ena-mines (dienophile), and triarylpyrylium tetrafluoroborate as the photosensitizer, the corresponding Diels-Alder adducts were formed in moderate to good yields with complete regiochemical and stereochemical control [79], Alternatively, good results could be obtained in the reaction of indoles and exocyclic 1,3-dienes, thus providing an easy excess to multifunctionalized carbazoles [80], Quantum... [Pg.214]

For the first time, application of sequential Diels-Alder reactions to an in situ-generated 2,3-dimethylenepyrrole was shown with various dienophiles 548 to afford 2,3,6,7-tetrasubstituted carbazoles (549). This novel tandem Diels-Alder reaction leads to carbazole derivatives in two steps, starting from pyrrole 547 and 2 equivalents of a dienophile, and is followed by 2,3-dichloro-5,6-dicyano-l,4-benzoquinone (DDQ) oxidation of the intermediate octahydrocarbazole. Mechanistically, the formation of the intermediate octahydrocarbazole appears to involve two sequential [4+2] cycloadditions between the exocyclic diene generated by the thermal elimination of acetic acid and a dienophile (529) (Scheme 5.17). [Pg.203]

Two pathways were considered a dipolar cycloaddition across S(l) and N(4) (path (a)) and a dipolar cycloaddition across S(l) and the exocyclic nitrogen N(exo) (path (b)) (Figure 5). The reactions are, however, facilitated by more electrophilic isocyanates (RSO2NCO > RCONCO > ArNCO > Alkyl NCO) disfavoring path (a), and the observed reactivity order of the starting heterocycles ((85a) > (85b) (85c)) is in better agreement with path (b). The expected intermediate (86) was successfully trapped when the bulky t-butyl group was introduced in position... [Pg.710]

It has long been recognized that nitrone cycloadditions may allow access to spirocyclic ring systems. Such systems are inherently difficult to synthesize by conventional methods, yet are a structural component of a number of biologically active natural materials. Two common strategies have emerged for spirocycle generation from exocyclic or endocyclic nitrones (Scheme 1.45). In the exocyclic version, the carbon atom (arrowed) of the nitrone C=N double bond of dipole 209 carries a cyclic substitutent and thus an intermolecular cycloaddition reaction will... [Pg.37]

Cycloaddition Reactions with Heterocyclic Exocyclic Double Bonds... [Pg.510]

In all of the above reactions, a chiral center of the alkene was located in the allylic position. However, as shall be demonstrated next, more distant chiral centers may also lead to highly selective cycloadditions with 1,3-dipoles. In two recent papers, the use of exocyclic alkenes has been applied in reactions with C,N-diphenylnitrone (165,166). The optically active alkenes 109 obtained from (S)-methyl cysteine have been applied in reactions with nitrones, nitrile oxides, and azomethine ylides. The 1,3-dipolar cycloaddition of 109 (R=Ph) with C,N-diphenyl nitrone proceeded to give endOa-1 Q and exOa-110 in a ratio of 70 30 (Scheme 12.36). Both product isomers arose from attack of the nitrone 68 at the... [Pg.842]

Chiral exocyclic alkenes such as 112, also having the chiral center two bonds away from the reacting alkene moiety, have been used in highly diastereoselective reactions with azomethine ylides, and have been used as the key reaction for the asymmetric synthesis of (5)-(—)-cucurbitine (Scheme 12.37) (169). The aryl sulfone 113 was used in a 1,3-dipolar cycloaddition reaction with acyclic nitrones. In 113, the chiral center is located four bonds apart from alkene, and as a result, only moderate diastereoselectivities of 36-56% de were obtained in these reactions (170). [Pg.843]


See other pages where Exocyclic reactions cycloadditions is mentioned: [Pg.896]    [Pg.60]    [Pg.41]    [Pg.107]    [Pg.177]    [Pg.32]    [Pg.809]    [Pg.516]    [Pg.402]    [Pg.437]    [Pg.24]    [Pg.505]    [Pg.99]    [Pg.471]    [Pg.517]    [Pg.649]    [Pg.705]    [Pg.885]    [Pg.10]    [Pg.39]    [Pg.239]    [Pg.507]   
See also in sourсe #XX -- [ Pg.112 , Pg.113 ]

See also in sourсe #XX -- [ Pg.112 , Pg.113 ]




SEARCH



Exocyclic

Exocyclic reactions

© 2024 chempedia.info