Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Exhausting column

The vapor leaving the exhausting column to pass to the heater is substantially in equilibrium with the liquid on the top plate of the column. It is partially condensed in the heater, enriched in its alcohol content, and then passes to the condenser where it is completely condensed. The portion of the vapor condensed in the heater is returned to the top plate of the column together with a controlled portion of the vapor condensed in the condenser, from the regulating bottle E. The distillate flows, through the tester F where its quantity and specific gravity may be measured, to the storage tank G. The water supply for the condenser is obtained from the constant level feed tank N. ... [Pg.93]

It was noted earlier that dryers are quite difierent in character from both distillation and evaporation. However, heat is still taken in at a high temperature to be rejected in the dryer exhaust. The appropriate placement principle as applied to distillation columns and evaporators also applies to dryers. The plus/minus principle from Chap. 12 provides a general tool that can be used to understand the integration of dryers in the overall process context. If the designer has the freedom to manipulate drying temperature and gas flow rates, then these can be changed in accordance with the plus/minus principle in order to reduce overall utility costs. [Pg.359]

Hydrochloric acid [7647-01-0], which is formed as by-product from unreacted chloroacetic acid, is fed into an absorption column. After the addition of acid and alcohol is complete, the mixture is heated at reflux for 6—8 h, whereby the intermediate malonic acid ester monoamide is hydroly2ed to a dialkyl malonate. The pure ester is obtained from the mixture of cmde esters by extraction with ben2ene [71-43-2], toluene [108-88-3], or xylene [1330-20-7]. The organic phase is washed with dilute sodium hydroxide [1310-73-2] to remove small amounts of the monoester. The diester is then separated from solvent by distillation at atmospheric pressure, and the malonic ester obtained by redistillation under vacuum as a colorless Hquid with a minimum assay of 99%. The aqueous phase contains considerable amounts of mineral acid and salts and must be treated before being fed to the waste treatment plant. The process is suitable for both the dimethyl and diethyl esters. The yield based on sodium chloroacetate is 75—85%. Various low molecular mass hydrocarbons, some of them partially chlorinated, are formed as by-products. Although a relatively simple plant is sufficient for the reaction itself, a si2eable investment is required for treatment of the wastewater and exhaust gas. [Pg.467]

Plutonium solutions that have a low activity (<3.7 x 10 Bq (1 mCi) or 10 mg of Pu) and that do not produce aerosols can be handled safely by a trained radiochemist in a laboratory fume hood with face velocity 125—150 linear feet per minute (38—45 m/min). Larger amounts of solutions, solutions that may produce aerosols, and plutonium compounds that are not air-sensitive are handled in glove boxes that ate maintained at a slight negative pressure, ca 0.1 kPa (0.001 atm, more precisely measured as 1.0—1.2 cm (0.35—0.50 in.) differential pressure on a water column) with respect to the surrounding laboratory pressure (176,179—181). This air is exhausted through high efficiency particulate (HEPA) filters. [Pg.204]

Although batch distillation is covered in a subsequent separate section, it is appropriate to consider the application of RCM and DRD to batch distulation at this time. With a conventional batch-rectification column, a charge of starting material is heated and fractionated, with a vapor product removed continuously. The composition of the vapor prodiic t changes continuously and at times drastically as the lighter component(s) are exhausted from the stiU. Between points of drastic change in the vapor composition, a cut is often made. Successive cuts can be removed until the still is nearly diy. The sequence, number, and limiting composition of each cut is dependent on the form of... [Pg.1304]

Typically an inlet pressure decrease of one inch of water column reduces the power output by 0.4 percent and increases the heat rate by 0.125 percent. Similarly, an exhaust pressure increase of one inch of water reduces the power output by 0.15 percent and the heat rate by 0.125 percent. [Pg.2516]

The total releases to air from the facility must be entered m Part III, Section 5 of Form R in pounds per year. The stack test results provide the concentration of metallic lead in each exhaust stream in grains per cubic toot and the exhaust rate in cubic feet per minute. Using the appropriate conversion factors, knowing the scrubber efficiency (from the manufacturer s data), and assuming yourfacility operates 24 hours per day, 300 days per year, you can calculate the total lead releases from the stack test data. Because point (stack) releases of lead are 2,400 pounds per year,-which is greater than the 999 pounds per year ranges in column A. 1, you must enter the actual calculated amount in column A.2 of Section 5.2. [Pg.83]

Air Treatment Systems. Fabric filters and cyclone collectors are considered to be mechanical separation systems the treatment code for these systems is A06. The treatment code for wet scrubbers is A03. Information on each air treatment system must be entered individually in Section 7. The cyclone collector and fabric filter on the lead oxide mill exhaust are sequential treatment systems, because they treat the same wastestream in sequence. Therefore, sequential treatment must be indicated for both systems in column D of Section 7. You are required to indicate the influent concentration only to... [Pg.84]

After the feed solution is processed to the extent that the resin becomes exhausted and caimot accomplish any further ion exchange, the resin must be regenerated. In normal column operation, for a cation system being converted first to the hydrogen then to the sodium form, regeneration employs the following basic steps ... [Pg.398]

The low-concentration eluants used to separate the sample ions on the separator column allow a substantial number of samples (typically about 50) to be analysed before the suppressor column is completely exhausted. Clearly an important practical consideration is the need to minimise the frequency of regeneration of the suppressor column and, for this reason, the specific capacity of the column is made as large as possible by using resins of moderate to high cross-linking. Some instruments contain two suppressor columns in parallel,... [Pg.199]


See other pages where Exhausting column is mentioned: [Pg.24]    [Pg.116]    [Pg.21]    [Pg.164]    [Pg.92]    [Pg.93]    [Pg.94]    [Pg.102]    [Pg.120]    [Pg.24]    [Pg.116]    [Pg.21]    [Pg.164]    [Pg.92]    [Pg.93]    [Pg.94]    [Pg.102]    [Pg.120]    [Pg.275]    [Pg.488]    [Pg.95]    [Pg.66]    [Pg.306]    [Pg.293]    [Pg.433]    [Pg.1674]    [Pg.2227]    [Pg.22]    [Pg.283]    [Pg.274]    [Pg.278]    [Pg.279]    [Pg.430]    [Pg.58]    [Pg.78]    [Pg.193]    [Pg.128]    [Pg.69]    [Pg.266]    [Pg.688]    [Pg.32]    [Pg.37]    [Pg.337]    [Pg.453]    [Pg.170]    [Pg.95]    [Pg.132]    [Pg.223]   
See also in sourсe #XX -- [ Pg.93 ]




SEARCH



© 2024 chempedia.info