Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Exhaust chemical reactions

Work in the area of simultaneous heat and mass transfer has centered on the solution of equations such as 1—18 for cases where the stmcture and properties of a soHd phase must also be considered, as in drying (qv) or adsorption (qv), or where a chemical reaction takes place. Drying simulation (45—47) and drying of foods (48,49) have been particularly active subjects. In the adsorption area the separation of multicomponent fluid mixtures is influenced by comparative rates of diffusion and by interface temperatures (50,51). In the area of reactor studies there has been much interest in monolithic and honeycomb catalytic reactions (52,53) (see Exhaust control, industrial). Eor these kinds of appHcations psychrometric charts for systems other than air—water would be useful. The constmction of such has been considered (54). [Pg.106]

Representation of Atmospheric Chemistry Through Chemical Mechanisms. A complete description of atmospheric chemistry within an air quaUty model would require tracking the kinetics of many hundreds of compounds through thousands of chemical reactions. Fortunately, in modeling the dynamics of reactive compounds such as peroxyacetyl nitrate [2278-22-0] (PAN), C2H2NO, O, and NO2, it is not necessary to foUow every compound. Instead, a compact representation of the atmospheric chemistry is used. Chemical mechanisms represent a compromise between an exhaustive description of the chemistry and computational tractabiUty. The level of chemical detail is balanced against computational time, which increases as the number of species and reactions increases. Instead of the hundreds of species present in the atmosphere, chemical mechanisms include on the order of 50 species and 100 reactions. [Pg.382]

Alkali is usually added in a second stage. However, with low reactivity high affinity dyes it is possible to add the alkah at the beginning of the dyeing process and control the rate of uptake and chemical reaction by temperature control. With high affinity dyes the exhaustion takes place at low temperature rapidly before the chemical reaction becomes significant. If dyes are carefully selected or synthesized to have identical dye uptake it is possible to include all the electrolyte from the beginning and operate an "ah-in" technique. [Pg.356]

Catalyst Function. Automobile exhaust catalysts are perfect examples of materials that accelerate a chemical reaction but are not consumed. Reactions are completed on the catalyst surface and the products leave. Thus the catalyst performs its function over and over again. The catalyst also permits reactions to occur at considerably lower temperatures. For instance, CO reacts with oxygen above 700°C at a substantial rate. An automobile exhaust catalyst enables the reaction to occur at a temperature of about 250°C and at a much faster rate and in a smaller reactor volume. This is also the case for the combustion of hydrocarbons. [Pg.487]

Combustion Many organic compounds released from manufacturing operations can be converted to innocuous carbon dioxide and water by rapid oxidation (chemical reaction) combustion. However, combustion of gases containing halides may require the addition of acid gas treatment to the combustor exhaust. [Pg.2187]

Here, the sign of equality (=) has been replaced by the double oppositely directed arrows (s=) called a sign of reversibility. Such a reaction is called a reversible reaction. The reversibility of reactions can be detected when both the forward and the reverse reactions occur to a noticeable extent. Generally, such reactions are described as reversible reactions. The most important criterion of a reaction of this type is that none of the reactants will become exhausted. When the reaction is allowed to take place in a closed system from where none of the substances involved in the reaction can escape, one obtains a mixture of the reactants and the products in the reaction vessel. Every reversible reaction, depending on its nature, will after some time reach a stage when the reactants and the products coexist in a state of balance, and their amounts will remain unaltered for unlimited time. Such a state of a chemical reaction is called chemical equilibrium, and the point of such an equilibrium varies only with temperature. [Pg.247]

The main process of combustion of blackpowder was studied exhaustively by Nobel and Abel and by Berthelot. These experimental results were examined in much greater detail by Debus, who has provided a self-consistent account of the chemical reactions involved. Debus considers that the overall reaction can be divided into two distinct stages (a) a rapid oxidation process and (b) a slower reduction process. [Pg.167]

One way to control gaseous pollutants like SO2 and SO3 is to remove the gases from fuel exhaust systems by absorption into a liquid solution or by adsorption onto a solid material. Absorption involves dissolving the gas in a liquid while adsorption is a surface phenomenon. In each case, a subsequent chemical reaction can occur to further trap the pollutant. Lime and limestone are two solid materials that effectively attract sulfur dioxide gas to their surfaces. The ensuing chemical reaction converts the gaseous pollutant to a solid nontoxic substance that can be collected and disposed or used in another industry. [Pg.47]

Ultimately, this section is meant to function as a ready-reference database for learning or review of bioconjugate chemistry. In this regard, a reaction can be quickly found, a short discussion of its properties and use read, and a visual representation of the chemistry of bond formation illustrated. What this section is not meant to be is an exhaustive discussion on the theory or mechanism behind each reaction, nor a review of every application in which each chemical reaction has been used. For particular applications where the chemistries are employed, cross-references are given to other sections in this book or to outside literature sources. [Pg.169]

Batteries have been developed from many pairs of chemicals capable of being oxidized and reduced. Some systems are rechargeable after the chemicals in the battery have been exhausted, the reactions can be reversed by the application of an external source of electricity. The lead-acid automobile battery is a familiar example. In many applications, such as cell phones and laptop computers, the weight of a portable electricity supply is critical. This has led to the development of batteries based on lightweight lithium chemistry, for which challenges still remain. [Pg.166]

The aim of this chapter is to illustrate with some representative examples the relationship between the two deeply connected phenomena of aromaticity and chemical reactivity. The coverage of the considerable theoretical work done on the relationship between aromaticity and chemical reactivity is extensive, but is not exhaustive. Rather, we confine our discussion to the most relevant chemical reactions. Section 28.2 is devoted to the current and most widely used descriptors of aromaticity. The complex relation between aromaticity and stability is analyzed in Section 28.3. Section 28.4 discusses the most relevant chemical reactions for which one of the main driving forces is aromaticity. And finally, in Section 28.5, the most important findings are briefly summarized. [Pg.422]

The effect of the volume and the surface catalytic reaction is sketched in Figs. 2.80 and 2.81, respectively. Obviously, the voltammetric behavior of the mechanism (2.188) is substantially different compared to the simple catalytic reaction described in Sect. 2.4.4. In the current mechanism, the effect of the volume catalytic reaction is remarkably different to the surface catalytic reaction, revealing that SWV can discriminate between the volume and the surface follow-up chemical reactions. The extremely high maxima shown in Fig. 2.81 correspond to the exhaustive reuse of the electroactive material adsorbed on the electrode surface, as a consequence of the synchronization of the surface catalytic reaction rate, adsorption equilibria, mass transfer rate of the electroactive species, and duration of the SW potential pulses. These results clearly reveal how powerful square-wave voltammetry is for analytical purposes when a moderate adsorption is combined with a catalytic regeneration of the electroactive material. This is also illustrated by a comparative analysis of the mechanism (2.188) with the simple surface catalytic reaction (Sect. 2.5.3) and the simple catalytic reaction of a dissolved redox couple (Sect. 2.4.4), given in Fig. 2.82. [Pg.118]

In the early 1950 s, it was reported by Haagen-Smit that many of the characteristics of photochemical smog could be explained by the presence of ozone and other photochemical oxidants. These substances, he believed, were formed in the atmosphere as a result of chemical reactions involving nitrogen oxides and hydrocarbons present in automobile exhaust. Significant quantities of nitrogen oxides were also emitted by power plants. [Pg.1]

Before ozone - and PAN were identified as specific phytotoxic components of the photochemical complex, researchers used a number of artificial chemical reaction systems to simulate the ambient photochemical-oxidant situation. These efforts involved a number of irradiated and nonirradiated reaction systems unsaturated hydrocarbon-ozone mixtures, unsaturated hydrocarbon-NOx mixtures, and dilute auto exhaust). Most research before 1960 involved one or more of these reaction systems. This research has been well reviewed " - 451.459.488.505 extenslvely covered here. Although the... [Pg.438]

Technical advantage/fimction Ceramic fibres are used in automotive catalytic converters as bearing and adjustment materials for the catalytic converter (monolith), where the chemical reactions for exhaust cleaning take place. They are also used for thermal and acoustic insulation. Series-tested ceramic fibre substitutes for converter-specific usage conditions are not yet available... [Pg.86]

We, therefore, decided to study the reaction of a molecular stream passing through an exhausted enclosure which is permeated by radiation corresponding to a temperature that would be sufficient under ordinary circumstances to produce chemical reaction. Since, in the molecular stream, the gas is at so low a concentration that the mean free path is considerably longer than the length of the stream, the number of collision is negligible. This method seems, therefore, to offer a direct means of investigating the reaction due to radiation alone. [Pg.2]

The chemical reactions by which these pollutants are converted to harmless emissions take place as exhaust gases pass through two chambers. Each chamber contains a catalyst that has been deposited on large numbers of very small ceramic beads or on the surfaces of a honeycomb-shaped hlter. In the hrst chamber, unburned hydrocarbons and water from exhaust gases react to form elemental hydrogen (H2). The most common catalyst in this chamber of the converter is hnely divided rhodium metal. [Pg.28]


See other pages where Exhaust chemical reactions is mentioned: [Pg.663]    [Pg.663]    [Pg.516]    [Pg.117]    [Pg.335]    [Pg.966]    [Pg.1176]    [Pg.15]    [Pg.420]    [Pg.122]    [Pg.173]    [Pg.77]    [Pg.160]    [Pg.308]    [Pg.84]    [Pg.1309]    [Pg.16]    [Pg.90]    [Pg.32]    [Pg.624]    [Pg.64]    [Pg.3]    [Pg.70]    [Pg.316]    [Pg.26]    [Pg.164]    [Pg.95]    [Pg.432]    [Pg.164]    [Pg.163]    [Pg.354]    [Pg.180]    [Pg.197]    [Pg.98]    [Pg.211]   
See also in sourсe #XX -- [ Pg.43 ]




SEARCH



Exhaust reactions

© 2024 chempedia.info