Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Excess compressibility volume

The excess molar volumes of 10-40 mol % methanol/C02 mixtures at 26°C as a function of pressure has been determined. The excess molar volumes varied with composition and pressure significant interaction between CO2 and methanol was noted from the observed excess molar volumes. To better characterize the interaction and its effect on analyte solubility, the partial molar volume of naphthalene at infinite dilution in liquid 10 and 40 mol % methanol/C02 mixtures was determined. The variation of the partial molar volume at infinite dilution with pressure correlated well with isothermal compressibility of the methanol/C02 mixtures (Souvignet and Olesik, 1995). [Pg.74]

Here Y denotes a general bulk property, Tw that of pure water and Ys that of the pure co-solvent, and the y, are listed coefficients, generally up to i=3 being required. Annotated data are provided in (Marcus 2002) for the viscosity rj, relative permittivity r, refractive index (at the sodium D-line) d. excess molar Gibbs energy G, excess molar enthalpy excess molar isobaric heat capacity Cp, excess molar volume V, isobaric expansibility ap, adiabatic compressibility ks, and surface tension Y of aqueous mixtures with many co-solvents. These include methanol, ethanol, 1-propanol, 2-propanol, 2-methyl-2-propanol (tert-butanol), 1,2-ethanediol, tetrahydrofuran, 1,4-dioxane, pyridine, acetone, acetonitrile, N, N-dimethylformamide, and dimethylsulfoxide and a few others. [Pg.36]

Nor can the theory of regular solutions based on the simplified lattice model (cf. Ch. Ill) give any indication on the excess properties related to the equation of state such as the excess volume, the excess compressibility and hence the excess entropy and the excess specific heat all of which are closely related to the equation of state. In fact, no equation of state at all is introduced in this model. The lattice model can only be used to calculate the excess free energy and the excess enthalpy which should be equal in the zerbth approximation. However the experimental data invalidate this conclusion. [Pg.230]

In wetted-wall units, the walls of a tall circular, slightly tapered combustion chamber are protected by a high volume curtain of cooled acid flowing down inside the wall. Phosphoms is atomized by compressed air or steam into the top of the chamber and burned in additional combustion air suppHed by a forced or induced draft fan. Wetted-waU. plants use 25—50% excess combustion air to reduce the tail-gas volume, resulting in flame temperatures in excess of 2000°C. The combustion chamber maybe refractory lined or made of stainless steel. Acid sprays at the bottom of the chamber or in a subsequent, separate spraying chamber complete the hydration of phosphoms pentoxide. The sprays also cool the gas stream to below 100°C, thereby minimising corrosion to the mist-collecting equipment (typically type 316 stainless steel). [Pg.327]

Vapor-Compression Evaporation and Waste Heat Evaporation. Both of these processes remove water from contaminants rather than contaminants from water. They are better suited for industrial installations where excess energy is available. The water thus produced is of high quaUty and can be used directly. An important advantage is the concentration of waste-residue volume with attendant economies of handling and transportation... [Pg.294]

The dependency of liquid volume on pressure may be expressed in terms of the coefficient of compressibility. The coefficient is constant over a wide range of pressures for a particular material, but is different for each substance and for the solid and liquid states of the same material. For liquids, volume decreases linearly with pressure. For gases volume is observed to be inversely proportional to pressure/. If water in its liquid state is subjected to a pressure change from 1 to 2 atm, then less than a 10 % reduction in volume occurs (the compressibility coefficient is very small). However, when the same pressure differential is applied to water vapor, a volume reduction in excess of 2 occurs. [Pg.72]

This type of compressor will continue to compress the air volume in the down-stream system until (1) some component in the system fails, (2) the brake horsepower exceeds the driver s capacity, or (3) a safety valve opens. Therefore, the operator s primary control input should be the compressor s discharge pressure. If the discharge pressure is below the design point, it is a clear indicator that the total down-stream demand is greater than the unit s capacity. If the discharge pressure is too high, the demand is too low and excessive unloading will be required to prevent failure. [Pg.561]

Several methods are also available for determination of the isothermal compressibility of materials. High pressures and temperatures can for example be obtained through the use of diamond anvil cells in combination with X-ray diffraction techniques [10]. kt is obtained by fitting the unit cell volumes measured as a function of pressure to an equation of state. Very high pressures in excess of 100 GPa can be obtained, but the disadvantage is that the compressed sample volume is small and that both temperature and pressure gradients may be present across the sample. [Pg.330]

The main excess properties are the free energy gE, enthalpy hB, entropy sE, and volume v (per molecule) data on other excess properties (specific heat, thermal expansion or compressibility) are rather scarce. In most cases gE, hE, sE, and vE have been determined at low pressures (<1 atm) so that for practical calculations p may be equated to zero their theoretical expressions deduced from Eqs. (33) and (34) are then as follows ... [Pg.126]

Hofman, T. et al.. Densities, excess volumes, isobaric expansivity, and isothermal compressibility of the (l-ethyl-3-methylimidazolium ethylsulfate + methanol) system at temperatures (298.15 to 333.15) K and pressures from (0.1 to 35) MPa, /. Chem. Thermodyn., 40, 580, 2008. [Pg.63]

In a subsequent theoretical analysis, Princen [26] initially used a model of infinitely long cylindrical drops to relate the geometric and thermodynamic properties of monodisperse HIPEs to the volume fraction of the dispersed phase. Thus the analysis could be restricted to a two-dimensional cross-section of the emulsion. Two principle emulsion parameters were considered the film thickness between adjacent drops (h) and the contact angle (0) [27-29]. The effects of these variables on the volume fraction, , both in the presence and absence of a compressive force on the emulsion, were considered. The results indicated that if both h and 0 are kept at zero, the maximum volume fraction () of the uncompressed emulsion is 0.9069, which is equivalent to = 0.7405 in real emulsions with spherical droplets (cf. Lissant s work). If 0 is zero (or constant) and h is increased, the maximum value of decreases on the other hand, increasing 0 with zero or constant h causes to increase above the value 0.9069, again at zero compression. This implies that, in the presence of an appreciable contact angle, without any applied compressive force, values of <(> in excess of the maximum value for undeformed droplets can occur. Thus, the dispersed phase... [Pg.166]


See other pages where Excess compressibility volume is mentioned: [Pg.832]    [Pg.108]    [Pg.100]    [Pg.13]    [Pg.178]    [Pg.180]    [Pg.209]    [Pg.1881]    [Pg.91]    [Pg.1871]    [Pg.166]    [Pg.293]    [Pg.39]    [Pg.545]    [Pg.103]    [Pg.49]    [Pg.878]    [Pg.74]    [Pg.122]    [Pg.230]    [Pg.235]    [Pg.454]    [Pg.375]    [Pg.580]    [Pg.157]    [Pg.128]    [Pg.264]    [Pg.347]    [Pg.372]    [Pg.126]    [Pg.139]    [Pg.74]    [Pg.84]    [Pg.165]    [Pg.365]    [Pg.15]    [Pg.1683]    [Pg.126]    [Pg.351]    [Pg.533]   
See also in sourсe #XX -- [ Pg.126 ]




SEARCH



Compressed liquid excess volumes

Compressed liquid mixture excess volumes

Excess compressibility

Volume compression

© 2024 chempedia.info