Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mixture excess volumes , compressed liquid

The study of molecular interactions in liquid mixtures is of considerable importance in the elucidation of the structural properties of molecules. Interactions between molecules influence the structural arrangement and shape of molecules. Dielectric relaxation of polar molecules in non-polar solvents using microwave absorption has been widely employed to study molecular structures and molecular interactions in liquid mixtures [81]. Ever since Lagemann and Dunbar developed a US velocity approach for the qualitative determination of the degree of association in liquids [82], a number of scientists have used ultrasonic waves of low amplitude to investigate the nature of molecular interactions and the physico-chemical behaviour of pure liquids and binary, ternary and quaternary liquid mixtures, and found complex formation to occur if the observed values of excess parameters (e.g. excess adiabatic compressibility, intermolecular free length or volume) are negative. These parameters can be calculated from those for ultrasonic velocity (c) and density (p). Thus,... [Pg.376]

All calculations were carried out at T = 313.15 K. The vapor-liquid equilibrium (VLB) data for the ternary mixture and the corresponding binaries were taken from [32]. The excess volume data for the ternary mixture A,A-dimethylformamide-methanol-water and binary mixtures A, A-dimethylformamide-methanol and methanol-water were taken from [33], and the excess volume data for the binary mixture A,A-dimethylformamide-water from [34]. There are no isothermal compressibility data for the ternary mixture, but the contribution of compressibility to the binary KBls is almost negligible far from the critical point [6]. For this reason, the compressibilities in binary and ternary mixtures were taken to be equal to the ideal compressibilities, and were calculated from the isothermal compressibilities of the pure components as follows ... [Pg.39]

The present paper is devoted to the local composition of liquid mixtures calculated in the framework of the Kirkwood—Buff theory of solutions. A new method is suggested to calculate the excess (or deficit) number of various molecules around a selected (central) molecule in binary and multicomponent liquid mixtures in terms of measurable macroscopic thermodynamic quantities, such as the derivatives of the chemical potentials with respect to concentrations, the isothermal compressibility, and the partial molar volumes. This method accounts for an inaccessible volume due to the presence of a central molecule and is applied to binary and ternary mixtures. For the ideal binary mixture it is shown that because of the difference in the volumes of the pure components there is an excess (or deficit) number of different molecules around a central molecule. The excess (or deficit) becomes zero when the components of the ideal binary mixture have the same volume. The new method is also applied to methanol + water and 2-propanol -I- water mixtures. In the case of the 2-propanol + water mixture, the new method, in contrast to the other ones, indicates that clusters dominated by 2-propanol disappear at high alcohol mole fractions, in agreement with experimental observations. Finally, it is shown that the application of the new procedure to the ternary mixture water/protein/cosolvent at infinite dilution of the protein led to almost the same results as the methods involving a reference state. [Pg.52]

Therefore, it is important to have a theoretical tool which allows one to examine (or even predict) the thickness of the LC region and the value of the LC on the basis of more easily available experimental information regarding liquid mixtures. A powerful and most promising method for this purpose is the fluctuation theory of Kirkwood and Buff (KB). " The KB theory of solutions allows one to extract information about the excess (or deficit) number of molecules, of the same or different kind, around a given molecule, from macroscopic thermodynamic properties, such as the composition dependence of the activity coefficients, molar volume, partial molar volumes and isothermal compressibilities. This theory was developed for both binary and multicomponent solutions and is applicable to any conditions including the critical and supercritical mixtures. [Pg.59]

Calculation of Compressed Liquid Excess Volumes and Isothermal Compressibilities for Mixtures of Simple Species... [Pg.325]

The excess molar volumes of 10-40 mol % methanol/C02 mixtures at 26°C as a function of pressure has been determined. The excess molar volumes varied with composition and pressure significant interaction between CO2 and methanol was noted from the observed excess molar volumes. To better characterize the interaction and its effect on analyte solubility, the partial molar volume of naphthalene at infinite dilution in liquid 10 and 40 mol % methanol/C02 mixtures was determined. The variation of the partial molar volume at infinite dilution with pressure correlated well with isothermal compressibility of the methanol/C02 mixtures (Souvignet and Olesik, 1995). [Pg.74]


See other pages where Mixture excess volumes , compressed liquid is mentioned: [Pg.325]    [Pg.325]    [Pg.832]    [Pg.230]    [Pg.23]   
See also in sourсe #XX -- [ Pg.325 ]




SEARCH



Compressed liquid excess volumes

Compressed liquid mixture excess

Compressible mixtures

Excess compressed liquid

Excess compressibility

Excess compressibility volume

Excess mixture

Liquid compressed

Liquid mixture

Liquid mixture excess volumes

Volume compression

Volume liquids

© 2024 chempedia.info