Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene Propylene Diene Monomer Rubber EPDM

This is a nonpolar rubber with very little unsamration. Nanoclays as well as nanotubes have been used to prepare nanocomposites of ethylene-propylene-diene monomer (EPDM) rubber. The work mostly covers the preparation and characterization of these nanocomposites. Different processing conditions, morphology, and mechanical properties have been smdied [61-64]. Acharya et al. [61] have prepared and characterized the EPDM-based organo-nanoclay composites by X-ray diffracto-gram (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy... [Pg.35]

In one of the first reports on fiber reinforcement of rubber, natural rubber (NR) was used by Collier [9] as the rubber matrix, which was reinforced using short cotton fibers. Some of the most commonly used rubber matrices for fiber reinforcement are NR, ethylene-propylene-diene monomer (EPDM) rubber, styrene-butadiene rubber (SBR), polychloroprene rubber, and nitrile rubber [10-13]. These rubbers were reinforced using short and long fibers including jute, silk, and rayon [14—16]. [Pg.353]

Mechanical Properties and Cure Rate Index of the Mixes—Role of Dry Bonding System on the Reinforcement of Ethylene-Propylene-Diene Monomer (EPDM) Rubber with Melamine Fiber ... [Pg.365]

FIGURE 12.7 Monsanto rheometric curves of ethylene-propylene-diene monomer (EPDM) rubber-melamine fiber composites [64]. A, gum compound B, compound containing 30 phr melamine fiber but no dry bonding system and C, compound containing both dry bonding system and 30 phr melamine fiber. (From Rajeev, R.S., Bhowmick, A.K., De, S.K., Kao, G.J.P., and Bandyopadhyay, S., Polym. Compos., 23, 574, 2002. With permission.)... [Pg.367]

FIGURE 12.10 Tapping mode atomic force microscopy (AFM) images of the section analyzes of ethylene-propylene-diene monomer (EPDM) rubber-melamine fiber composites. A, composite containing no dry bonding system B, composite containing resorcinol, hexamine, and silica in the concentrations 5, 3, and 15 phr, respectively. [Pg.370]

Radiation Treatment NVP, 2-hydroxyethylmethacrylate (HEMA), and acrylamide (AAm) have been grafted to the surface of ethylene-propylene-diene monomer (EPDM) rubber vulcanizates using the radiation method (from a Co 7 source) to alter surface properties such as wettability and therefore biocompatibility [197]. Poncin-Epaillard et al. [198] have reported the modification of isotactic PP surface by EB and grafting of AA onto the activated polymer. Radiation-induced grafting of acrylamide onto PE is very important... [Pg.872]

Peroxide cure, silicone network preparation via, 22 562-563 Peroxide-cured dipolymers, 20 697-698 Peroxide-cured EPDM, 22 804t. See also Ethylene- propylene-diene monomer (EPDM) rubber... [Pg.684]

Ethylene—Propylene Rubber. Ethylene and propylene copolymerize to produce a wide range of elastomeric and thermoplastic products. Often a third monomer such dicyclopentadiene, hexadiene, or ethylene norbomene is incorporated at 2—12% into the polymer backbone and leads to the designation ethylene—propylene—diene monomer (EPDM) rubber (see Elastomers, synthetic-ethylene-propylene-diene rubber). The third monomer introduces sites of unsaturation that allow vulcanization by conventional sulfur cures. At high levels of third monomer it is possible to achieve cure rates that are equivalent to conventional rubbers such as SBR and PBD. Ethylene—propylene rubber (EPR) requires peroxide vulcanization. [Pg.232]

Bhowmick and co-workers [168] investigated the bulk and surface modification of ethylene propylene diene monomer (EPDM) rubber and fluoro-elastomer by electron beam irradiation. The structure of the modified elastomers was analysed with the help of IR spectroscopy and XPS. The gel content, surface energy, friction coefficient and dynamic mechanical properties of bulk modified fluoro-elastomers and the surface-modified EPDMs were also measured. The resultant properties of the modified EPDM were correlated with the structural alterations. [Pg.269]

For solutions that contain less than 10% hydrazine, cold-rolled steel is satisfactory. PVC is not recommended. Ethylene-propylene-diene monomer (EPDM) rubber, polyketones and polyphenylene sulfides are suitable for use with anhydrous hydrazine253. [Pg.346]

As in-house, rubber specific databases are developed for LC-MS, the inclusion of this technique into the fingerprinting process will complement GC-MS data by contributing information on thermally labile and relatively large (e.g. oligomeric) potential migrants. This has been demonstrated recently in a paper by Sidwell, which describes how LC-MS was used to provide additional information on the species present in an ether extract of a food contact ethylene-propylene-diene monomer (EPDM) rubber. [Pg.286]

When ethylene is copolymerized with substantial amounts (>25%) of propylene an elastomeric copolymer is produced, commonly known as ethylene-propylene rubber (EPR) or ethylene-propylene monomer (EPM) rubber. When a diene, such as dicyclopentadiene, is also included, a terpolymer known as ethylene-propylene-diene monomer (EPDM) rubber is obtained. EPR and EPDM are produced with single site and Ziegler-Natta catalysts and are important in the automotive and construction industries. However, EPR and EPDM are produced in much smaller quantities relative to polyethylene. Elastomers display vastly different properties than other versions of industrial polyethylene and are considered outside the purview of this text. EPR and EPDM will not be discussed further. [Pg.6]

Ethylene-propylene diene monomer (EPDM) rubbers are used in mass predominantly in isolation systems such as CRFM (condenser, radiator, fan module) or engine mounting. More varied are the sealing applications, which include transmission seals and o-rings, HVAC module seals and gaskets, radiator seals, weather stripping... [Pg.117]

Recent findings indicated that this drawback can be overcome by using particular reinforcing agents, i.e. graft copolymers obtained by modifying saturated or low-unsaturated elastomers such as ethylene-propylene (EP) or ethylene-propylene-diene monomer (EPDM) rubbers and acrylic elastomers (9-16). [Pg.217]

Ethylene-Propylene-Diene-Monomer (EPDM) Rubber. The main properties of EPDM are its outstanding heat, ozone and weather resistance, as well as its electrical insulating properties. EPDM rubber finds use in vehicles (weather seals in windows and trunks, cooling system hoses), in safety equipment (seals in respirators), roofing (waterproofing of roofs), and playground surfacing. [Pg.106]

Van Gisbergen, J. G. M., Hoeben, W. F. L. M., Meijer, H. E. H., Melt rheology of electron-beam-irradiated blends, of polypropylene and ethylene-propylene-diene monomer (EPDM) rubber. Polymer Engineering and Science 1991,31,1539-1544. [Pg.301]

Competition between NR and bio-based SR (SR made from biosourced feedstock) should not be underestimated. For example in 2012, LANXESS is planning to produce the world s first SR, i.e. ethylene propylene diene monomer (EPDM) rubber (under the brand name of Keltan Eco) from ethylene derived from sugar cane at its Triunfo plant in Brazil. The ethanol is dehydrated into ethylene and polymerized to produce EPDM rubber." Besides, bio-based SR is suggested to be the bio-based feedstock of poly(butadiene) rubber for tyre industries. [Pg.36]

Since EPR rubber molecules do not contain unsaturation, they can be vulcanized only by organic peroxide curing systems. If a third monomer is added during the polymerization, i.e., a diene monomer (wherein only one of the two double bonds takes part in the polymerization), unsaturation can be introduced into the molecule, and it can then be vulcanized by accelerated sulfur curing systems. A chemical structure for ethylene-propylene-diene-monomer (EPDM) rubbers can be expressed as follows ... [Pg.267]

Electron beam modification of PTFE nanopowder resulted in increasing concentration of radicals and carboxyhc groups (—COO H) with increase in irradiation dose. Low-temperature reactive mixing of the modified PTFE with ethylene-propylene-diene-monomer (EPDM) rubber produced PTFE coupled EPDM rubber compounds with the desired physical properties due to the formation of a compatible interphase this was confirmed by transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) [56]. [Pg.394]

FKMs are coextruded with lower-cost copolymers such as etliylene acrylic copolymer. They can be modihed by blending and vulcanizing with other synthetic rubbers such as silicones, ethylene propylene rubber (EPR) and ethylene propylene diene monomer (EPDM) rubbers, epichlorohydrin, and nitriles. Fluoroelastomers are blended with modihed nitrile butadiene rubber (NBR) to obtain an intermediate performance-cost balance. These blends are useful for underhood applications in environments outside the engine temperature zone such as timing chain tensioner seals. Fluoroelastomers can also be blended with fluorosilicones and other high-temperature polymers to meet engine compartment environments and cost-performance balance. [Pg.215]

Ethylene-propylene (EP) and ethylene-propylene diene monomer (EPDM) rubbers are both prototypical elastomeric materials for... [Pg.390]


See other pages where Ethylene Propylene Diene Monomer Rubber EPDM is mentioned: [Pg.441]    [Pg.103]    [Pg.366]    [Pg.464]    [Pg.11]    [Pg.364]    [Pg.790]    [Pg.361]    [Pg.361]    [Pg.736]    [Pg.189]    [Pg.33]    [Pg.138]    [Pg.171]    [Pg.132]    [Pg.2075]    [Pg.2076]    [Pg.438]    [Pg.802]   
See also in sourсe #XX -- [ Pg.12 , Pg.223 ]




SEARCH



Diene monomers

Diene rubbers

EPDM

EPDM (ethylene-propylene-diene

EPDM-propylene

Ethylene diene

Ethylene propylene

Ethylene-propylene diene monomer EPDM)

Ethylene-propylene monomer

Ethylene-propylene monomers rubber

Ethylene-propylene-diene

Ethylene-propylene-diene monomer rubbers

Ethylene-propylene-diene rubber

Monomers propylene monomer

© 2024 chempedia.info