Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene polymerization initiator

A variety of substituted binaphthol and bisphenol complexes of titanium and zirconium have also been investigated as ethylene polymerization initiators. Of note, (62) and (63) exhibit activities of 350 gmmol-1 h-1 bar-1 and 1,580 gmmol-1 h-1 bar-1.190-192... [Pg.10]

Jin, J., Uozumi, T. and Soga, K., Ethylene Polymerization Initiated by SiC>2-supported Neodymocene Catalysts , Macromol. Rapid Commun., 16, 317-322 (1995). [Pg.241]

Figure 6.14 Example of polymerization chain reaction ethylene polymerization initiated by the [M(CO)s] photoinitiator (generated from its [Mn2(CO)uJ precursor by photodissociation) and propagated by its successive chain carriers... Figure 6.14 Example of polymerization chain reaction ethylene polymerization initiated by the [M(CO)s] photoinitiator (generated from its [Mn2(CO)uJ precursor by photodissociation) and propagated by its successive chain carriers...
Polythene is difficult to make and was discovered only when chemists at ICI were attempting to react ethylene with other compounds under high pressure. Even with the correct reagents, radical initiators like AIBN or peroxides (Chapter 39), high pressures and temperatures are still needed. At 75 °C and 1700 atmospheres pressure ethylene polymerization, initiated by dibenzoyl peroxide, is a radical chain reaction. The peroxide is first cleaved homolytically to give two benzoate radicals. [Pg.1459]

Divalent samarium complexes can also catalyze ethylene polymerization, initially through one-electron transfer from the Sm(II) species to an ethylene molecule to form a Sm(III)-carbon bond, which is the active intermediate that induces ethylene polymerization. The less reducing divalent organometallic ytterbium and europium complexes are generally inert [143]. [Pg.340]

In bound-ion-radical mechanism for ethylene polymerization, initiation can be either through a chemisorbed ethylene molecule (Fig. 9.9) or a chemisorbed hydrogen atom. With ethylene as initiator, polymerization occurs simultaneously at two sites, each associated originally with the ends of the double bond in the ethylene molecule adsorbed on an active dual site. With hydrogen as initiator, polymer growth occurs only at one site. In either case, an organometallic bond is formed. [Pg.783]

After rinzinger s initiator discussed above, a variety of metallocene- and non-met-allocene-based classes of ethylene polymerization initiators also including lanthanide metallocene complexes have been developed In the metallocene series, particularly noteworthy are ordan s MAO-free 1 -electron catalyst p r 1 h and Waymouth s bis 3 phenyl indenyl zirconium dichloride, the latter providing isotactic-atactic block polypropylene... [Pg.373]

Subsequently, many non-metallocene efficient ethylene polymerization initiators containing nitrogen- and oxygen ligands have been diselosed. amples... [Pg.373]

Acryhc stmctural adhesives have been modified by elastomers in order to obtain a phase-separated, toughened system. A significant contribution in this technology has been made in which acryhc adhesives were modified by the addition of chlorosulfonated polyethylene to obtain a phase-separated stmctural adhesive (11). Such adhesives also contain methyl methacrylate, glacial methacrylic acid, and cross-linkers such as ethylene glycol dimethacrylate [97-90-5]. The polymerization initiation system, which includes cumene hydroperoxide, N,1S7-dimethyl- -toluidine, and saccharin, can be apphed to the adherend surface as a primer, or it can be formulated as the second part of a two-part adhesive. Modification of cyanoacrylates using elastomers has also been attempted copolymers of acrylonitrile, butadiene, and styrene ethylene copolymers with methylacrylate or copolymers of methacrylates with butadiene and styrene have been used. However, because of the extreme reactivity of the monomer, modification of cyanoacrylate adhesives is very difficult and material purity is essential in order to be able to modify the cyanoacrylate without causing premature reaction. [Pg.233]

Other Plastics Uses. The plasticizer range alcohols have a number of other uses in plastics hexanol and 2-ethylhexanol are used as part of the catalyst system in the polymerization of acrylates, ethylene, and propylene (55) the peroxydicarbonate of 2-ethylhexanol is utilized as a polymerization initiator for vinyl chloride various trialkyl phosphites find usage as heat and light stabHizers for plastics organotin derivatives are used as heat stabHizers for PVC octanol improves the compatibHity of calcium carbonate filler in various plastics 2-ethylhexanol is used to make expanded polystyrene beads (56) and acrylate esters serve as pressure sensitive adhesives. [Pg.450]

Peioxydicaibonates are efficient polymerization initiators for most vinyl monomer polymerizations, especially for monomers such as acrylates, ethylene, and vinyl chloride. They are particularly good initiators for less reactive monomers such as those containing aHyl groups. They are also effective for curing of unsaturated polyester mol ding resins. [Pg.227]

The formation of a polymeric initiator containing azo and peroxy groups has been reported by Hazer et al. [80]. In this paper, poly(ethylene glycol) (M 4 x 10. .. 3 X 10 ) was condensed with AIBN vide ante)... [Pg.750]

A monomer is a reactive molecule that has at least one functional group (e.g. -OH, -COOH, -NH2, -C=C-). Monomers may add to themselves as in the case of ethylene or may react with other monomers having different functionalities. A monomer initiated or catalyzed with a specific catalyst polymerizes and forms a macromolecule—a polymer. For example, ethylene polymerized in presence of a coordination catalyst produces a linear homopolymer (linear polyethylene) ... [Pg.302]

Addition polymerization is employed primarily with substituted or unsuhstituted olefins and conjugated diolefins. Addition polymerization initiators are free radicals, anions, cations, and coordination compounds. In addition polymerization, a chain grows simply hy adding monomer molecules to a propagating chain. The first step is to add a free radical, a cationic or an anionic initiator (I ) to the monomer. For example, in ethylene polymerization (with a special catalyst), the chain grows hy attaching the ethylene units one after another until the polymer terminates. This type of addition produces a linear polymer ... [Pg.304]

Conjugated dienes can be polymerized just as simple alkenes can (Section 7.10). Diene polymers are structurally more complex than simple alkene polymers, though, because double bonds remain every four carbon atoms along the chain, leading to the possibility of cis-trans isomers. The initiator (In) for the reaction can be either a radical, as occurs in ethylene polymerization, or an acid. Note that the polymerization is a 1,4-addition of the growing chain to a conjugated diene monomer. [Pg.498]

The application of these catalysts in the initial state (without any special treatment of the surface organometallic complexes of such cata-lysts) for ethylene polymerization has been described above. The catalysts formed by the reaction of 7r-allyl compounds with Si02 and AUOj were found to be active in the polymerization of butadiene as well (8, 142). The stereospecificity of the supported catalyst differed from that of the initial ir-allyl compounds. n-Allyl complexes of Mo and W supported on silica were found to be active in olefin disproportionation (142a). [Pg.191]

For /-butyl peresters there is also a variation in efficiency in the series where R is primary secondary>tertiary. The efficiency of /-butyl peroxypentanoate in initiating high pressure ethylene polymerization is >90%, that of /-butyl peroxy-2-ethylhexanoate ca 60% and that of/-butyl peroxypivalate ca 40%.196 Inefficiency is due to cage reaction and the main cage process in the case where R is secondary or tertiary is disproportionation with /-butoxy radicals to form /-butanol and an olefin.196... [Pg.88]

Thermal reduction at 623 K by means of CO is a common method of producing reduced and catalytically active chromium centers. In this case the induction period in the successive ethylene polymerization is replaced by a very short delay consistent with initial adsorption of ethylene on reduce chromium centers and formation of active precursors. In the CO-reduced catalyst, CO2 in the gas phase is the only product and chromium is found to have an average oxidation number just above 2 [4,7,44,65,66], comprised of mainly Cr(II) and very small amount of Cr(III) species (presumably as Q -Cr203 [66]). Fubini et al. [47] reported that reduction in CO at 623 K of a diluted Cr(VI)/Si02 sample (1 wt. % Cr) yields 98% of the silica-supported chromium in the +2 oxidation state, as determined from oxygen uptake measurements. The remaining 2 wt. % of the metal was proposed to be clustered in a-chromia-like particles. As the oxidation product (CO2) is not adsorbed on the surface and CO is fully desorbed from Cr(II) at 623 K (reduction temperature), the resulting catalyst acquires a model character in fact, the siliceous part of the surface is the same of pure silica treated at the same temperature and the anchored chromium is all in the divalent state. [Pg.11]

Scheme 6 Scheme of the initiation mechanism in ethylene polymerization according to a Ziegler-Natta-like behavior... [Pg.20]

Fig. 4 Fast time-resolved spectra of ethylene polymerization reaction on CO-reduced Cr/Si02 sample. Initial ethylene pressure was 10 Torr. Last spectrum after 15 s. Reprinted from [77]. Copyright (1994) by Elsevier... Fig. 4 Fast time-resolved spectra of ethylene polymerization reaction on CO-reduced Cr/Si02 sample. Initial ethylene pressure was 10 Torr. Last spectrum after 15 s. Reprinted from [77]. Copyright (1994) by Elsevier...
From the results discussed so far, it is evident that only CH2 groups have been observed in the very early stages of the ethylene polymerization reaction. Of course, this could be due to formation of metallacycles, but can be also a consequence of the high TOP which makes the observation of the first species troublesome. To better focalize the problem it is useful to present a concise review of the models proposed in the literature for ethylene coordination, initiation, and propagation reactions. [Pg.24]

All mechanisms proposed in Scheme 7 start from the common hypotheses that the coordinatively unsaturated Cr(II) site initially adsorbs one, two, or three ethylene molecules via a coordinative d-7r bond (left column in Scheme 7). Supporting considerations about the possibility of coordinating up to three ethylene molecules come from Zecchina et al. [118], who recently showed that Cr(II) is able to adsorb and trimerize acetylene, giving benzene. Concerning the oxidation state of the active chromium sites, it is important to notice that, although the Cr(II) form of the catalyst can be considered as active , in all the proposed reactions the metal formally becomes Cr(IV) as it is converted into the active site. These hypotheses are supported by studies of the interaction of molecular transition metal complexes with ethylene [119,120]. Groppo et al. [66] have recently reported that the XANES feature at 5996 eV typical of Cr(II) species is progressively eroded upon in situ ethylene polymerization. [Pg.25]

Zirconium bis(amides) such as (35) and (36) display moderate ethylene polymerization activities.133,134 Complex (37) containing a chelating diamide ligand has been shown to initiate the living polymerization of a-olefins such as 1-hexene (Mw/Mn= 1.05-1.08) with activities up to 750gmmol-1 h-1.135-137 The living polymerization of propylene using this system activated with... [Pg.7]

Chromium zeolites are recognised to possess, at least at the laboratory scale, notable catalytic properties like in ethylene polymerization, oxidation of hydrocarbons, cracking of cumene, disproportionation of n-heptane, and thermolysis of H20 [ 1 ]. Several factors may have an effect on the catalytic activity of the chromium catalysts, such as the oxidation state, the structure (amorphous or crystalline, mono/di-chromate or polychromates, oxides, etc.) and the interaction of the chromium species with the support which depends essentially on the catalysts preparation method. They are ruled principally by several parameters such as the metal loading, the support characteristics, and the nature of the post-treatment (calcination, reduction, etc.). The nature of metal precursor is a parameter which can affect the predominance of chromium species in zeolite. In the case of solid-state exchange, the exchange process initially takes place at the solid- solid interface between the precursor salt and zeolite grains, and the success of the exchange depends on the type of interactions developed [2]. The aim of this work is to study the effect of the chromium precursor on the physicochemical properties of chromium loaded ZSM-5 catalysts and their catalytic performance in ethylene ammoxidation to acetonitrile. [Pg.345]

We demonstrated that a series of Ti-FI catalysts 40 (Fig. 25) and 44-47 (Fig. 29) possessing a t-Bu, cyclohexyl, i-Pr, Me, and H ortho to the phenoxy-O (thus having various steric environments in close proximity to the active site) all initiate room temperature living ethylene polymerization, though, for the non-fluorinated congeners, the steric bulk of the substituent ortho to the phenoxy-O significantly influences product molecular weight (Table 6) [28, 33]. [Pg.31]


See other pages where Ethylene polymerization initiator is mentioned: [Pg.516]    [Pg.536]    [Pg.516]    [Pg.536]    [Pg.144]    [Pg.186]    [Pg.187]    [Pg.376]    [Pg.223]    [Pg.229]    [Pg.116]    [Pg.73]    [Pg.22]    [Pg.22]    [Pg.29]    [Pg.214]    [Pg.15]    [Pg.518]    [Pg.95]    [Pg.84]    [Pg.116]    [Pg.29]    [Pg.32]   
See also in sourсe #XX -- [ Pg.594 ]




SEARCH



Ethylene polymerization

Initiator polymeric

© 2024 chempedia.info