Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene, catalytic oxidation mechanism

Several important nomadical catalytic oxidations go via organometalhc mechanisms. The commercially useful Wacker process converts ethylene to acetaldehyde with air as oxidant, using Pd(II) and Cu(II) catalysts. The Pd(II) binds to the ethylene to give an organometalhc intermediate, the alkene complex. This complex subsequently uses water as the O source to oxidize the ethylene to acetaldehyde, the Pd being reduced in the process. The resulting Pd(0) is reoxidized to Pd(II) with two equivalents of Cu(n) and the Cu(I) so formed is then reoxidized by air to close the cycle. [Pg.3383]

This procedure is primarily of industrial importance. It is sufficient to point out that oxirane, which is of great importance in industrial syntheses, is produced entirely by direct catalytic oxidation from ethylene. In the organic preparative laboratory, the direct epoxidation of olefins is carried out in the liquid phase. Independently of the reaction conditions employed, the reaction proceeds via a radical mechanism, generally with a poor yield, with low selectivity, and only rarely stereoselectively. [Pg.34]

As has been stated in the case of ethylene, the catalytic oxidation of unsaturated hydrocarbons is complicated by the fact that such substances are somewhat sensitive to the action of hydrolyzing agents. The presence, therefore, of even small amounts of water in the oxidizing gases makes it difficult to determine the exact mechanism of the process, i.e., whether the primary reaction consists of oxidation, hydration, or simultaneous oxidation and hydration. The same situation is met with again in the catalytic oxidation of acetylene and is further complicated by the fact that the primary products of hydrolysis and oxidation tend to undergo a variety of different secondary reactions. [Pg.233]

The various hydrocarbon oxidation schemes discussed above were believed to proceed at the catalyst surface only. The present concepts accept the occurrence of complex heterogeneous-homogeneous reactions proceeding in part at the solid surface and in part in the gas or liquid phase. Many catalytic oxidation processes considered recently as purely heterogeneous appeared to proceed by the heterogeneous-homogeneous mechanism. Such are the oxidations of hydrogen, methane, ethane, ethylene, propene, and ammonia over platinum at elevated temperatures, as studied by Polyakov et al. (131-136). When hydrocarbons are oxidized over platinum the reaction sets in on the catalyst surface and terminates in the gas phase. [Pg.467]

In the oxidation of CH4 and CjHg, no inhibition by the reactant is operative, and initial conversion is higher near the reactor inlet, where favourable conditions for ignition are stabilized. This relationship between dynamic behaviour and adsortion-desorption properties, finds support in the literature. Site competition between hydrocarbons and oxygen has been recognized as a key point in the mechanism of catalytic oxidation [3] in the same study, a substantially different behaviour in catalytic combustion was reported for alkanes and ethylene, and this was related to the strong adsorption properties of the latter. [Pg.436]

Among such oxidations, note that liquid-phase oxidations of solid paraffins in the presence of heterogeneous and colloidal forms of manganese are accompanied by a substantial increase (compared with homogeneous catalysis) in acid yield [3]. The effectiveness of n-paraffin oxidations by Co(III) macrocomplexes is high, but the selectivity is low the ratio between fatty acids, esters, ketones and alcohols is 3 3 3 1. Liquid-phase oxidations of paraffins proceed in the presence of Cu(II) and Mn(II) complexes boimd with copolymers of vinyl ether, P-pinene and maleic anhydride (Amberlite IRS-50) [130]. Oxidations of both linear and cyclic olefins have been studied more intensively. Oxidations of linear olefins proceed by a free-radical mechanism the accumulation of epoxides, ROOH, RCHO, ketones and RCOOH in the course of the reaction testifies to the chain character of these reactions. The main requirement for these processes is selectivity non-catalytic oxidation of propylene (at 423 K) results in the formation of more than 20 products. Acrylic acid is obtained by oxidation of propylene (in water at 338 K) in the presence of catalyst by two steps at first to acrolein, then to the acid with a selectivity up to 91%. Oxidation of ethylene by oxygen at 383 K in acetic acid in... [Pg.545]

In ethylene oligomerization, oxidative addition plays no role. In the insertion-elimination mechanism, the metal oxidation state is constant throughout the catalytic cycle. In the metallacycle mechanism, the oxidative step is an oxidative coupling reaction (see below). [Pg.760]

The mechanism of poisoning automobile exhaust catalysts has been identified (71). Upon combustion in the cylinder tetraethyllead (TEL) produces lead oxide which would accumulate in the combustion chamber except that ethylene dibromide [106-93-4] or other similar haUde compounds were added to the gasoline along with TEL to form volatile lead haUde compounds. Thus lead deposits in the cylinder and on the spark plugs are minimized. Volatile lead hahdes (bromides or chlorides) would then exit the combustion chamber, and such volatile compounds would diffuse to catalyst surfaces by the same mechanisms as do carbon monoxide compounds. When adsorbed on the precious metal catalyst site, lead haUde renders the catalytic site inactive. [Pg.489]

The rate of peroxide decomposition and the resultant rate of oxidation are markedly increased by the presence of ions of metals such as iron, copper, manganese, and cobalt [13]. This catalytic decomposition is based on a redox mechanism, as in Figure 15.2. Consequently, it is important to control and limit the amounts of metal impurities in raw rubber. The influence of antioxidants against these rubber poisons depends at least partially on a complex formation (chelation) of the damaging ion. In favor of this theory is the fact that simple chelating agents that have no aging-protective activity, like ethylene diamine tetracetic acid (EDTA), act as copper protectors. [Pg.466]

Considerable effort has been carried out by different groups in the preparation of amphiphihc block copolymers based on polyfethylene oxide) PEO and an ahphatic polyester. A common approach relies upon the use of preformed co- hydroxy PEO as macroinitiator precursors [51, 70]. Actually, the anionic ROP of ethylene oxide is readily initiated by alcohol molecules activated by potassium hydroxide in catalytic amounts. The equimolar reaction of the PEO hydroxy end group (s) with triethyl aluminum yields a macroinitiator that, according to the coordination-insertion mechanism previously discussed (see Sect. 2.1), is highly active in the eCL and LA polymerization. This strategy allows one to prepare di- or triblock copolymers depending on the functionality of the PEO macroinitiator (Scheme 13a,b). Diblock copolymers have also been successfully prepared by sequential addition of the cyclic ether (EO) and lactone monomers using tetraphenylporphynato aluminum alkoxides or chloride as the initiator [69]. [Pg.22]

Manecke et al.16s synthesized a semiconducting polymeric complex which possessed both bis(ethylene-l,2-dithiolato)Cu(II) and a phthalocyanine-Cu(II)-type structure 54. This Cu complex exhibited high catalytic activity in the oxidative polymerization of XOH, about 50 times higher than that of pyridine-Cu. A synchronous four-electron-transfer mechanism was proposed for the catalysis of 54. The phthalo-cyanine-Cu(II) type structure of 54 is presumed to form a complex with molecular... [Pg.80]

Oxygen-transfer reactions have been shown to occur from cobalt(III)-nitro complexes to alkenes coordinated to palladium.472 Thus ethylene and propene have been oxidized stoichiometrically in quantitative yields to acetaldehyde and acetone respectively, with the concomitant reduction of the nitro- to the nitrosyl-cobalt analog. A catalytic transformation with turnover numbers of 4-12 can be achieved at 70 °C in diglyme. The mechanism shown in Scheme 11 has been suggested. [Pg.372]


See other pages where Ethylene, catalytic oxidation mechanism is mentioned: [Pg.163]    [Pg.256]    [Pg.209]    [Pg.1023]    [Pg.149]    [Pg.147]    [Pg.80]    [Pg.416]    [Pg.180]    [Pg.405]    [Pg.226]    [Pg.75]    [Pg.65]    [Pg.257]    [Pg.816]    [Pg.66]    [Pg.30]    [Pg.16]    [Pg.142]    [Pg.10]    [Pg.183]    [Pg.184]    [Pg.202]    [Pg.884]    [Pg.298]    [Pg.243]    [Pg.180]    [Pg.100]    [Pg.717]    [Pg.138]    [Pg.308]    [Pg.537]    [Pg.389]    [Pg.247]    [Pg.366]    [Pg.405]   
See also in sourсe #XX -- [ Pg.171 , Pg.172 ]




SEARCH



Catalytic mechanism

Ethylene mechanism

Ethylene, catalytic oxidation

© 2024 chempedia.info