Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Esters, resolution with enzymes

Kinetic resolution by ester hydrolysis with enzymes... [Pg.457]

Unfortunately, the size of the crystallographic problem presented by elastase coupled with the relatively short lifedme of the acyl-enzyme indicated that higher resolution X-ray data would be difficult to obtain without use of much lower temperatures or multidetector techniques to increase the rate of data acquisition. However, it was observed that the acyl-enzyme stability was a consequence of the known kinetic parameters for elastase action on ester substrates. Hydrolysis of esters by the enzyme involves both the formation and breakdown of the covalent intermediate, and even in alcohol-water mixtures at subzero temperatures the rate-limidng step is deacylation. It is this step which is most seriously affected by temperature, allowing the acyl-enzyme to accumulate relatively rapidly at — 55°C but to break down very slowly. Amide substrates display different kinetic behavior the slow step is acylation itself. It was predicted that use of a />-nitrophenyl amid substrate would give the structure of the pre-acyl-enzyme Michaelis complex or even the putadve tetrahedral intermediate (Alber et ai, 1976), but this experiment has not yet been carried out. Instead, over the following 7 years, attention shifted to the smaller enzyme bovine pancreatic ribonuclease A. [Pg.332]

Kinetic resolutions by means of the selective formation or hydrolysis of an ester group in enzyme-catalyzed reactions proved to be a successful strategy in the enantioseparation of 1,3-oxazine derivatives. Hydrolysis of the racemic laurate ester 275 in the presence of lipase QL resulted in formation of the enantiomerically pure alcohol derivative 276 besides the (23, 3R)-enantiomer of the unreacted ester 275 (Equation 25) <1996TA1241 >. The porcine pancreatic lipase-catalyzed acylation of 3-(tu-hydroxyalkyl)-4-substituted-3,4-dihydro-2/7-l,3-oxazines with vinyl acetate in tetrahydrofuran (THF) took place in an enantioselective fashion, despite the considerable distance of the acylated hydroxy group and the asymmetric center of the molecule <2001PAC167, 2003IJB1958>. [Pg.410]

Figure 2.11 Transesterification of a racemic mixture of a secondary alcohol (1 -phenoxy-2-propanol, 1 in Table 2.1) with a butanoic acyl donor follows a ping-pong bi-bi mechanism in which Substrate 1 (acyl donor) enters the enzyme, forms an acyl enzyme expelling Product 1 (the leaving alcohol from the acyl donor). Then another Substrate 2 (the enantiomers of the alcohol to be resolved) reacts with the acyl enzyme to liberate Product 2 (the enantiomers of the produced esters), leaving the enzyme in its original form. In a kinetic resolution one of the enantiomeric alcohols reacts faster than the other to form an excess of one enantiomer of the esters (ideally enantiopure, for 1 the (R)-ester was formed with very high ee). The success of the resolution is expressed by the enantiomeric ratio E, which depends on the difference in free energy of activation of the two diastereomeric transition states. These are in turn related to the two tetrahedral intermediates. Figure 2.11 Transesterification of a racemic mixture of a secondary alcohol (1 -phenoxy-2-propanol, 1 in Table 2.1) with a butanoic acyl donor follows a ping-pong bi-bi mechanism in which Substrate 1 (acyl donor) enters the enzyme, forms an acyl enzyme expelling Product 1 (the leaving alcohol from the acyl donor). Then another Substrate 2 (the enantiomers of the alcohol to be resolved) reacts with the acyl enzyme to liberate Product 2 (the enantiomers of the produced esters), leaving the enzyme in its original form. In a kinetic resolution one of the enantiomeric alcohols reacts faster than the other to form an excess of one enantiomer of the esters (ideally enantiopure, for 1 the (R)-ester was formed with very high ee). The success of the resolution is expressed by the enantiomeric ratio E, which depends on the difference in free energy of activation of the two diastereomeric transition states. These are in turn related to the two tetrahedral intermediates.
The enzyme-catalyzed regio- and enantioselective reduction of a- and/or y-alkyl-substituted p,5-diketo ester derivatives would enable the simultaneous introduction of up to four stereogenic centers into the molecule by two consecutive reduction steps through dynamic kinetic resolution with a theoretical maximum yield of 100%. Although the dynamic kinetic resolution of a-substituted P-keto esters by chemical [14] or biocatalytic [15] reduction has proven broad applicability in stereoselective synthesis, the corresponding dynamic kinetic resolution of 2-substituted 1,3-diketones is rarely found in the literature [16]. [Pg.388]

A similar resolution has also been achieved on large scale <20040PD22>. The KR of racemic isoxazoline 312 catalyzed by enzymes was studied. The best result was obtained with lipase B from Candida antarctica (CALB), which hydrolyzed the ethyl ester of (—)-312 to the corresponding monoacid (—)-313. The reaction, which was run in 0.1 M phosphate buffer/acetone at room temperature, spontaneously stopped at 50% conversion to yield monoacid (—)-313 and the residual ester (- -)-312 with ees higher than 99% <2004TA3079>. The C-5 epimer of 312 underwent enantioselective hydrolysis (>99% ee) of the methyl ester linked to C-5 in the presence of the protease proleather (subtilisin Carlsberg), whereas CALB and other lipases were not able to resolve it (Equation 53). [Pg.416]

Morgan, J., Pinhey, J. T. and Sherry, C. J. (1997) Reaction of organolead triacetates with 4-ethoxycarbonyl-2-methyl-4,5-dihydro- l, 3-oxaz.ol-5-one. The synthesis of a-aryl- and a-vinyl-/V-acetylglycines and their ethyl esters and their enzymic resolution. Journal of the Chemical Society Perkin Transactions 1, 613-619. [Pg.491]

A very straightforward approach as compared with the existing one (Fig. 3) would have been the direct enzyme-catalyzed peptide formation (cf. Chen et al. [30]) by enantioselective aminolysis of ester 2 with histidine methylester 4 or even racemic histidine ester, as it would resolve the objectives of resolution and coupling in one step. Orientating experiments in which 20 proteases adsorbed on porous glass beads (SIKUG 041/02/120/A, Schott) were in contact with EtOH solutions of 2 and 4 with various water contents, however, did not reveal any reaction. [Pg.388]

By far the commonest reaction used in kinetic resolution by enzymes is ester formation or hydrolysis. Normally one enantiomer of the ester is formed or hydrolysed leaving the other untouched so one has the easy job of separating an ester from either an acid or an alcohol. There are broadly two kinds of enzymes that do this job. Lipases hydrolyse esters of chiral alcohols with achiral acids such as 119 while esterases hydrolyse esters of chiral acids and achiral alcohols such as 122. Be warned this definition is by no mans hard and fast If the unreacted component (120 or 123) is wanted, the reaction is run to just over 50% completion, to ensure complete destruction of the unwanted enantiomer, while if the reacted component (121 or 124) is wanted it is best to stop short of 50% completion so that little of the unwanted enantiomer reacts. [Pg.457]

Dynamic Kinetic Resolution. Another typical acid-catalysed reaction is the racemisation of chiral alcohols, due to inversion at the chiral carbon. This can actually be made use of in the formation of enantiopure compounds, by dynamic kinetic resolution using an enzyme, such as a lipase, that catalyses enantioseleetive esterification in an organic medium. By coupling zeolite Beta-catalysed intereonversion of benzylic alcohol enantiomers with enzyme-catalysed esterifieation of only one of the enantiomeric alcohols, almost complete eon version to enantiopure ester ean be achieved. ... [Pg.356]

Another approach, called kinetic resolution, depends on the different rates of reaction of two enantiomers with a chiral reagent. A very effective form of kinetic resolution uses enzymes as chiral catalysts to selectively bring about the reaction of one enantiomer in a racemic mixture (enzymatic resolution). Lipases, or esterases, enzymes that catalyze ester hydrolysis, are often used. In a typical procedure, one enantiomer of the acetate ester of a racemic alcohol undergoes hydrolysis and the other is left unchanged when hydrolyzed in the presence of an esterase from hog liver. [Pg.309]

During a study on the resolution of the sterically demanding bicyclic acetate shown in Scheme 2.56 [397], which represents an important chiral building block for the synthesis of leukotrienes [398], it was found that crude steapsin is a highly selective catalyst for its resolution. On the other hand, pure PPL and a-chymotryp-sin were unable to hydrolyze the substrate. Cholesterol esterase, another known hydrolase impurity in crude steapsin capable of accepting bulky substrates, was able to hydrolyze the ester but with low selectivity. Finally, a novel hydrolase which was isolated from crude PPL proved to be the enzyme responsible for the highly selective transformation. [Pg.96]

Many of the most useful applications of enzymes in asymmetric synthesis involve kinetic resolution and an example is the hydrolysis of ( )-A -acetylphenylalanine methyl ester (43) with a-chymotrypsin to give the (S)-acid (44) and the unchanged (/ )-ester (45). Very often, as in this case, we can make use of either of the two products once they have been resolved by a further simple non-asymmetric chemical step (here hydrolysis of (45) to give the (/ )-acid). [Pg.78]

Shvo s catalyst 1 is a cyclopentadienone-ligated dimthenium complex, [Ru2(CO)4 (/t-H)(C4Ph4COHOCC4Ph4)]. It was first synthesized in 1984 by Shvo et al. [1, 2], Since then it has been widely applied in various hydrogen transfer reactions, including hydrogenation of carbonyl compounds [2, 3], transfer hydrogenation of ketones and imines [4,5], disproportion of aldehydes to esters [6], and Oppenauer-type oxidations of alcohols [7-9] and amines [10-12]. Shvo s complex 1 has also been found to be effective as a racemization catalyst for secondary alcohols and amines, and complex 1 has therefore been used together with enzymes in several dynamic kinetic resolution (DKR) protocols [13-18]. [Pg.86]

In this two-step resolution, the enzyme catalyzes the hydrolysis of the diester to monoester, then the monoester to the diol. Each step contributes to the overall enantioselectivity. The reaction mixture is biphasic buffered water containing the cmde enzyme and an ether solution of the diester. The cmde enzyme is bovine pancreas acetone powder that contains many enz5mies, but the substrate rearts only with the cholesterol esterase so the other enzymes do not interfere, other than to make the work-up messy. The enz5mie cholesterol esterase requires a bile salt, taurocholate, for fiiU activity. This bile salt helps emulsify the two phases. Cholesterol esterase seems to behave more like a lipase than an esterase in this example since it works with the substrate in the organic phase. The dipentanoate ester is chosen to simplify the separation of starting diester and product diol (Figure 5.7). [Pg.139]

Selective hydrolysis of esters is a well-established procedure for the resolution of chiral carboxylic acids. Enzymes such as hydrolases, lipases and proteases are utilized. Due to their high selectivity for (5)-amino acids, proteases have been widely used in the selective transformations of amino acids and their derivatives. a-Chymotrypsin- a serine protease -catalyzes not only the hydrolysis of amide bonds, but also the cleavage of various esters, including a-alkyl-a-amino acid esters. One application is the synthesis of (5)-a-[ C]-methyltryptophan The anion synthesized by LDA-deprotonation of M-benzylidene tryptophan methyl ester (T) was alkylated with [ CJmethyl iodide to obtain the methyl A-benzylidene derivative 2, which was hydrolyzed under acidic conditions. Subsequent selective cleavage of the ester group with a-chymotrypsin provided the enantiomerically pure (5)-amino acid 3 in 33% radiochemical yield. [Pg.609]

Unprotected racemic amines can be resolved by enantioselective acylations with activated esters (110,111). This approach is based on the discovery that enantioselectivity of some enzymes strongly depends on the nature of the reaction medium. For example, the enantioselectivity factor (defined as the ratio of the initial rates for (3)- and (R)-isomers) of subtiHsin in the acylation of CX-methyl-ben zyl amine with tritiuoroethyl butyrate varies from 0.95 in toluene to 7.7 in 3-methyl-3-pentanol (110). The latter solvent has been used for enantioselective resolutions of a number of racemic amines (110). [Pg.343]

In this case study, an enzymatic hydrolysis reaction, the racemic ibuprofen ester, i.e. (R)-and (S)-ibuprofen esters in equimolar mixture, undergoes a kinetic resolution in a biphasic enzymatic membrane reactor (EMR). In kinetic resolution, the two enantiomers react at different rates lipase originated from Candida rugosa shows a greater stereopreference towards the (S)-enantiomer. The membrane module consisted of multiple bundles of polymeric hydrophilic hollow fibre. The membrane separated the two immiscible phases, i.e. organic in the shell side and aqueous in the lumen. Racemic substrate in the organic phase reacted with immobilised enzyme on the membrane where the hydrolysis reaction took place, and the product (S)-ibuprofen acid was extracted into the aqueous phase. [Pg.130]

The resolution of racemic ethyl 2-chloropropionate with aliphatic and aromatic amines using Candida cylindracea lipase (CCL) [28] was one of the first examples that showed the possibilities of this kind of processes for the resolution of racemic esters or the preparation of chiral amides in benign conditions. Normally, in these enzymatic aminolysis reactions the enzyme is selective toward the (S)-isomer of the ester. Recently, the resolution ofthis ester has been carried out through a dynamic kinetic resolution (DKR) via aminolysis catalyzed by encapsulated CCL in the presence of triphenylphosphonium chloride immobilized on Merrifield resin (Scheme 7.13). This process has allowed the preparation of (S)-amides with high isolated yields and good enantiomeric excesses [29]. [Pg.179]

DKR requires two catalysts one for resolution and one for racemization. We and others have developed a novel strategy using enzyme as the resolution catalyst and metal as the racemization catalyst as shown in Scheme 1. The R-selecfive DKR can be achieved by combining a R-selective enzyme with a proper metal catalyst and its counterpart by the combination of the metal catalyst with a -selective enzyme. This strategy has been demonstrated to be applicable to the DKR of secondary alcohols, allylic esters, and primary amines. Among them, the DKR of secondary alcohols has been the most successful. [Pg.60]


See other pages where Esters, resolution with enzymes is mentioned: [Pg.435]    [Pg.59]    [Pg.329]    [Pg.181]    [Pg.37]    [Pg.2392]    [Pg.87]    [Pg.325]    [Pg.206]    [Pg.210]    [Pg.350]    [Pg.132]    [Pg.244]    [Pg.289]    [Pg.412]    [Pg.294]    [Pg.2392]    [Pg.346]    [Pg.294]    [Pg.1519]    [Pg.167]    [Pg.242]    [Pg.404]    [Pg.92]    [Pg.15]    [Pg.28]    [Pg.171]   
See also in sourсe #XX -- [ Pg.170 , Pg.199 , Pg.247 , Pg.271 ]




SEARCH



Enzymes resolution

Enzymes, resolution with

Resolution with

Resolutions ester formation with enzymes

© 2024 chempedia.info