Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pinacol esters

Depending on the silica gel activity, partial hydrolysis can be observed for pina-col esters. Of the common boron esters, pinacol borates are the most resistant to hydrolysis. [Pg.632]

The cross-coupling reaction of differently functionalized aryl hahdes with a 2,5-disubstimted thiophene 49 bearing a trimethylstannyl as well as a boronic acid ester pinacolate (BPin) group shows high nucleophile selectivity (Scheme 22, Table 12) [115]. The biaryls 50 are chemoselectively formed via Stille coupling in the presence of a catalytic system consisting of palladium(II) acetate and SPhos... [Pg.125]

Alternative Names bis(pinacolato)diboron B2pin2t diborane pinacol ester pinacol diborane. [Pg.435]

Boronic esters are easily prepared from a diol and the boronic acid with removal of water, either chemically or azeotropically. (See Chapter 2 on the protection of diols.) Sterically hindered boronic esters, such as those of pinacol, can be prepared in the presence of water. Boronic esters of simple unhindered diols are quite sensitive to water and hydrolyze readily. On the other hand, very hindered esters, such as the pinacol and pinanediol derivatives, are exceedingly difficult to hydrolyze and often require rather harsh conditions to achieve cleavage. [Pg.452]

Picric acid, synthesis of, 628 Pinacol rearrangement, 646 Pineapple, esters in, 808 Piperidine, molecular model of, 939 structure of. 918 P1TC, see Phenylisothiocyanate, 1031-1032... [Pg.1311]

Allylboronates prepared from simple diols display appreciable reactivity, but eyelie boronate derivatives prepared from 1,2- or 1,3-diols display considerably less. The commonly employed pinacol esters are among the least reactive members of this class. 2-Allyl-3-methyl-l,3,2-oxaza-... [Pg.272]

SYNTHESIS OF 3-PYRIDYLBORONIC ACID AND ITS PINACOL ESTER. APPLICATION OF 3-PYRIDYLBORONIC ACID IN SUZUKI COUPLING TO PREPARE 3-PYRIDIN-3-YLQUINOLINE... [Pg.45]

B. 3-(4,4,5,5-Tetramethyl-[l,3,2]dioxaborolan-2-yl)pyridine. A 250-mL, one-necked, round-bottomed flask equipped with a magnetic stirbar and a Dean-Stark trap fitted with a condenser capped with a nitrogen inlet adaptor is charged with tris(3-pyridyl)boroxin-0.85 H20 (3.0 g, 9.1 mmol), pinacol (4.07 g, 34.4 mmol) (Note 6), and 120 mL of toluene. The solution is heated at reflux for 2.5 hr in a 120°C oil bath. The reaction is complete when the mixture changes from cloudy-white to clear. The solution is then concentrated under reduced pressure on a rotary evaporator to afford a solid residue. This solid is suspended in 15 mL of cyclohexane (Note 7) and the slurry is heated to 85°C, stirred at this temperature for 30 min, and then allowed to cool slowly to room temperature. The slurry is filtered, rinsed twice using the mother liquors, washed with 3 mL of cyclohexane, and dried under vacuum to afford 4.59 g (82%) of 3-pyridylboronic acid pinacol ester as a white solid (Note 8). [Pg.46]

Boronic Ester Relative Retention Minimum Detectable Quantity (pg of pinacol) Optimum Detector Temperature ( C)... [Pg.949]

Another method for achieving selective pinacol rearrangement involves synthesis of a glycol monosulfonate ester. These compounds rearrange under the influence of base. [Pg.884]

The subjects of this section are two reactions that do not actually involve carbo-cation intermediates. They do, however, result in carbon to carbon rearrangements that are structurally similar to the pinacol rearrangement. In both reactions cyclic intermediates are formed, at least under some circumstances. In the Favorskii rearrangement, an a-halo ketone rearranges to a carboxylic acid or ester. In the Ramberg-Backlund reaction, an a-halo sulfone gives an alkene. [Pg.892]

The Favorskii Rearrangement. When treated with base, a-halo ketones undergo a skeletal change that is similar to the pinacol rearrangement. The most commonly used bases are alkoxide ions, which lead to esters as the reaction products. This reaction is known as the Favorskii rearrangement.84... [Pg.892]

Differences in chirality of substrate, and nature of solvent, have no effect on the competitive nature of the displacement of 0-alkyl and S-methyl groups in the reactions between (+)-pinacolyl alkoxide and 0-ethyl (and methyl) S-methyl methylphosphonothioates (Scheme 23). For the (R)-( + ) esters, e.g. (210), the displacements are highly stereoselective and occur with configurational inversion,but the enantiomeric esters do not display such stereoselectivity. (-)-Menthol might be considered a mirror image of (S)-pinacol, and similar reactions with the sodium salt of (-)-menthol occur highly stereoselectively... [Pg.176]

We have seen similar radical anions generated from ketones in pinacol reduction with sodium or magnesium (p. 218), and also from esters with sodium in the acyloin condensation (p.218). [Pg.307]

Biradicals have also been encountered as intermediates in the Mg reduction of ketones to pinacols (p. 218) and, as radical anions, in the acyloin condensation of esters (p. 218). The thermolysis of cyclopropane (131) to propene (132) at 500° is also believed to involve... [Pg.337]

A recently reported vinylation of nitrones was accomplished by using ZnMe2 and vinylboronic esters of pinacol 256. The optimal conditions for the addition were 3.5 h at 60 °C in DMF. Yields of the products, A -allylic hydro-xyamines 257, varied significantly from 14% to 92% (Scheme 137).359... [Pg.398]

Stewart and Whiting have reported a useful application of sequential Heck and Suzuki coupling reactions of a vinylborane pinacol ester with palladium catalysis to generate a tetraene (equation 147)260. [Pg.447]

Another useful method for generating various IV-allylhydroxylamines is the reaction between vinyl boronic ester of pinacol and nitrone in the presence of dimethylzinc (655). [Pg.280]

The rhodium-catalyzed borylation of methyl C-H bonds is compatible with several moieties containing oxygen, nitrogen, and fluorine.154 For example, the reaction of pinacol acetal of 2-hexanone with bis(pinacolato)diborane (B2pin2) in the presence of Cp Rh(774-C6Me6) catalyst gives the alkylboronate ester in 74% yield (Equation (111)). The rhodium-catalyzed C-H activation and borylation occur at the least hindered and least electron-rich methyl group. [Pg.241]

Addition of a boron-boron bond across a carbon-carbon triple bond is known for some 40 years since the finding that diboron tetrahalides add to alkenes and alkynes in the absence of catalysts.36 Although the reaction seemed to be potentially attractive, the instability of diboron tetrahalides was the critical drawback for the practical use in synthesis. In 1993, much more stable pinacol ester derivative of diboron was found to add to alkynes in the presence of platinum catalysts such as Pt(PPh3)4, Pt(CH2=CH2)(PPh3)2, and Pt(CO)2(PPh3)2 (Figure 1, Scheme 2).37,38 Other... [Pg.727]

Compound 51 was found to be unstable and difficult to purify, as described in the literature [93—95]. Therefore, 51 was not isolated, but was instead converted to the stable pinacol 1-acetamido-l-hexylboronate derivative 52. However, the acylated derivative 52 could not be purified by column chromatography as it was destroyed on silica gel and partially decomposed on alumina. Fortunately, we found that it dissolves in basic aqueous solution (pH > 11) and can then be extracted into diethyl ether when the pH of the aqueous layer is 5—6. Finally, pure 52 was obtained by repeated washing with weak acids and bases. It should be mentioned here that exposure to a strongly acidic solution, which also dissolves compound 51, results in its decomposition. Compared with other routes, the present two-step method involves mild reaction conditions (THF, ambient temperature) and a simple work-up procedure. It should prove very useful in providing an alternative access to a-aminoboronic esters, an important class of inhibitors of serine proteases. [Pg.248]

Diboration provides another means of obtaining organoboranes. Studies [30-36] have been focused on the diboration reactions of alkynes and olefins with pinacol ester derivatives catalyzed by Pd(0) and Pt(0) metal complexes. Interestingly, it has been shown that Pt (0) complexes catalyze cis addition of the B-B bond in pinacol ester derivatives to alkynes but not to olefins. On the other hand, Pd (0) complexes do not catalyze diboration reactions, neither for alkynes nor for olefins. [Pg.206]

Instead of the borohydrido pinacol ester one can also use the boron dimer. Several metals, intermediates as the one shown in Figure 19.10 have been isolated. They may contain 1-3 Bpin units and 3-1 hydrides. For the mechanism... [Pg.395]


See other pages where Pinacol esters is mentioned: [Pg.324]    [Pg.61]    [Pg.93]    [Pg.324]    [Pg.61]    [Pg.93]    [Pg.53]    [Pg.394]    [Pg.14]    [Pg.670]    [Pg.263]    [Pg.273]    [Pg.335]    [Pg.47]    [Pg.227]    [Pg.389]    [Pg.22]    [Pg.301]    [Pg.217]    [Pg.249]    [Pg.61]    [Pg.241]   
See also in sourсe #XX -- [ Pg.158 ]




SEARCH



Allylboronates pinacol esters

Allylboronic acid pinacol ester

Boronic acid, allylesters pinacol ester

Boronic acid, crotylchiral pinacol ester

Diborane pinacol ester

Esters, p-keto intermolecular pinacolic coupling reactions

Pinacol

Pinacol alkenylboronic esters

Pinacol boronic ester

Pinacol boronic ester from

Pinacol ester derivatives

Pinacol ester of diboron

Pinacol ester of diboronic

Pinacol esters with arylboronic acids

Pinacolate

Pinacolation

Pinacolizations

Pinacols

© 2024 chempedia.info