Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equilibrium Basic Principles

Both 2-hydroxythiazoie and 2-mercaptothiazoIe have been studied to determine the position of the protomeric equilibrium 43 7 43a 43b (Scheme 17). Most studies indicate that form 43a is largely predominant in neutral solution for X = 0 and X=S (52-56, 887, 891). The basic principle is to compare a physical property of the investigated product with that of a model representative of each protomeric form. The similarity of physicochemical properties between the product and one of the model compounds is taken as evidence for the position of the protomeric equilibrium. The limits of such an approach have been discussed in detail elsewhere (57). [Pg.377]

This description of the dynamics of solute equilibrium is oversimplified, but is sufficiently accurate for the reader to understand the basic principles of solute distribution between two phases. For a more detailed explanation of dynamic equilibrium between immiscible phases the reader is referred to the kinetic theory of gases and liquids. [Pg.12]

Several basic principles that engineers and scientists employ in performing design calculations and predicting Uie performance of plant equipment includes Uieniiochemistiy, chemical reaction equilibrimii, chemical kinetics, Uie ideal gas law, partial pressure, pliase equilibrium, and Uie Reynolds Number. [Pg.131]

Many operations in petrochemical plants require the absorption of components from gas streams into lean oils or solvents. The resultant rich oil is then stripped or denuded of the absorbed materials. The greatest use of this operation utilizes hydrocarbon materials, but the basic principles are applicable to other systems provided adequate equilibrium data are available. [Pg.108]

In six-membered rings containing heteroatoms, the basic principles are the same that is, there are chair, twist, and boat forms, axial and equatorial groups, and so on. The conformational equilibrium for tetrahydropyridines, for example has been studied. In certain compounds, a number of new factors enter the picture. We deal with only two of these. ... [Pg.175]

The basic principle of every measurement of the Volta potential and generally of the investigations of voltaic cells too, in contrast to galvanic cells, may thus be presented for systems containing metal/solution (Fig. 2) and liquid/liquid interfaces (Fig. 3), respectively. This interface is created at the contact of aqueous and organic solutions (w and s, respectively) of electrolyte MX in the partition equilibrium. Of course, electrolyte MX, shown in Fig. 2 and other figures of this chapter, may be different in organic (s) and aqueous (w) phases. [Pg.17]

As we described in Chapter 3, the binding of reversible inhibitors to enzymes is an equilibrium process that can be defined in terms of the common thermodynamic parameters of dissociation constant and free energy of binding. As with any binding reaction, the dissociation constant can only be measured accurately after equilibrium has been established fully measurements made prior to the full establishment of equilibrium will not reflect the true affinity of the complex. In Appendix 1 we review the basic principles and equations of biochemical kinetics. For reversible binding equilibrium the amount of complex formed over time is given by the equation... [Pg.99]

In the preceding chapter, the choice of reactor type was made on the basis of the most appropriate concentration profile as the reaction progressed, in order to minimize reactor volume for single reactions or maximize selectivity (or yield) for multiple reactions for a given conversion. However, there are still important effects regarding reaction conditions to be considered. Before considering reaction conditions, some basic principles of chemical equilibrium need to be reviewed. [Pg.97]

A basic principle that allows the qualitative prediction of the effect of changing reactor conditions on any chemical system in equilibrium is Le Chatelier s Principle ... [Pg.100]

Although several examples implementing the Newton-Raphson method for the computation of chemical equilibrium are developed in Chapter 6, we will now present some simple applications that illustrate its basic principles. [Pg.143]

In this chapter, we examine the various mechanisms that influence chemical redistribution in the subsurface and the means to quantify these mechanisms. The same basic principles can be applied to both saturated and partially saturated porous media in the latter case, the volumetric water content (and, if relevant, volatilization of NAPL constiments into the air phase) must be taken into account. Also, such treatments must assume that the partially saturated zone is subject to an equilibrium (steady-state) flow pattern otherwise, for example, under periods of heavy infiltration, the volumetric water content is both highly space and time dependent. When dealing with contaminant transport associated with unstable water infiltration processes, other quantification methods (e.g., using network... [Pg.219]

A detailed description of IC is given in reference 1 however, the basic principles of the method can best be described by an example. Figure 1 schematically represents both an anion and a cation IC analysis. In both cases, the instrumentation involves a pumping system, an eluent, an injection valve, an ion-exchange separator column, an ion-exchange suppressor column and a conductivity cell. The sample is first injected into the flow system then the well known reaction equilibrium shown in Figure 1 results in the separation of sample anions or cations on the separator column (2). [Pg.233]

The procedure to be described here was originally developed by Cha. The basic principle of his approach is to treat the rapid-equilibrium segment as though it were a single enzyme species at steady state with the other species. Let us consider the hybrid Rapid-Equilibrium Random-Ordered Bi Bi system ... [Pg.260]

Matte-slag-gas reactions in Cu-Fe-Ni sulphide ores. Sulphide ores are a major source of Cu, Ni and precious metals. A basic principle of the extraction processes is to blow air into the molten sulphide in order to oxidise (1) S, which forms a gas and (2) Fe, which forms predominantly FeO and then partitions to a slag phase which covers the matte. A key element in the recovery of the metals is the solidification of the matte which separates into a sulphur-rich matte and metal-rich liquid. This process may occur under non-equilibrium conditions with precious metals concentrating in the last metallic liquid. [Pg.398]

This subject is concerned only with equilibrium states and never with the rate of a process. Its basic principles are embodied in three well-known laws. The first of these enables us to calculate the energy change in a particular thermodynamic process, e.g. a chemical reaction, the second enables us to decide whether or not a process is spontaneous and the third permits the calculation of the position of equilibrium. In what follows, those parts of thermodynamics which are particularly relevant to the calculation of chemical equilibria will be summarised and this will be followed by an example illustrating the main points of the previous discussion. Much fuller accounts of thermodynamics are to be found in the books by Denbigh [3] and Bett et al. [4]. [Pg.5]

Many different types of reversible reactions exist in chemistry, and for each of these an equilibrium constant can be defined. The basic principles of this chapter apply to all equilibrium constants. The different types of equilibrium are generally denoted using an appropriate subscript. The equilibrium constant for general solution reactions is signified as or K, where the c indicates equilibrium concentrations are used in the law of mass action. When reactions involve gases, partial pressures are often used instead of concentrations, and the equilibrium constant is reported as (p indicates that the constant is based on partial pressures). and are used for equilibria associated with acids and bases, respectively. The equilibrium of water with the hydrogen and hydroxide ions is expressed as K. The equilibrium constant used with the solubility of ionic compounds is K p. Several of these different K expres-... [Pg.152]

Experimental data on only 26 quaternary systems were found by Sorensen and Arlt (1979), and none of more complex systems, although a few scattered measurements do appear in the literature. Graphical representation of quaternary systems is possible but awkward, so that their behavior usually is analyzed with equations. To a limited degree of accuracy, the phase behavior of complex mixtures can be predicted from measurements on binary mixtures, and considerably better when some ternary measurements also are available. The data are correlated as activity coefficients by means of the UNIQUAC or NRTL equations. The basic principle of application is that at equilibrium the activity of each component is the same in both phases. In terms of activity coefficients this... [Pg.459]

Quantum chemistry is the foundation of molecular chemistry dealing with structure, properties, and interaction of molecules. The basic principles are offered by quantum mechanics. Quantum-chemical calculations are able to supply information needed for molecular descriptors for QSAR analyses. The use of quantum-chemical calculations is becoming common to establish molecular equilibrium geometries and conformations and to supply quantitative thermochemical and kinetic data. [Pg.150]

Whereas the basic principles for calculating the composition of a solution in equilibrium with a carbonate mineral are relatively straightforward, the application of these types of calculations to real world situations is commonly less obvious and fraught with difficulties. Consequently, we will present a series of calculations applied to natural geochemical systems, inspired by those originally... [Pg.54]

Before discussing the chemical dynamics of estuarine systems it is important to briefly review some of the basic principles of thermodynamic or equilibrium models and kinetics that are relevant to upcoming discussions in aquatic chemistry. Similarly, the fundamental properties of freshwater and seawater are discussed because of the importance of salinity gradients and their effects on estuarine chemistry. [Pg.57]

Experimental methodologies for perturbing a chemical reaction at equilibrium are well developed and descriptions of them are widely available.20,21 The choice of method depends on the time scale of the reaction kinetics and the kinds of chemical species whose concentration deviations are to be measured. Techniques as simple as the dilution of one or more chemical species or as complicated as electromagnetic field pulsing can be involved (Fig. 4.1). The basic principles, regardless of methodology, are that an external perturbation (e.g., a change in applied pressure) occurs over a time interval that is very much smaller than the time scales of the reaction kinetics that the mechanism... [Pg.153]

This chapter describes basic physico-chemical relations between the gas phase transport of atoms and molecules and their thermochemical properties, which are related to the adsorption-desorption equilibrium. These methods can either be used to predict the behavior of the adsorbates in the chromatographic processes, in order to design experiments, or to characterize the absorbate from its experimentally observed behavior in a process. While Part I of this chapter is devoted to basic principles of the process, the derivation of thermochemical data is discussed in Part n. Symbols used in the following sections of Part I are described in Section 5. For results, which were obtained applying the described evaluation methods in gas-adsorption chromatography, see Chapters 4 and 7 of this book. [Pg.206]


See other pages where Equilibrium Basic Principles is mentioned: [Pg.96]    [Pg.217]    [Pg.459]    [Pg.227]    [Pg.61]    [Pg.254]    [Pg.56]    [Pg.71]    [Pg.160]    [Pg.256]    [Pg.24]    [Pg.124]    [Pg.286]    [Pg.378]    [Pg.138]    [Pg.12]    [Pg.10]    [Pg.171]    [Pg.12]    [Pg.272]    [Pg.255]    [Pg.1]    [Pg.169]    [Pg.96]    [Pg.81]   


SEARCH



BASIC PRINCIPLES OF NON-EQUILIBRIUM THERMODYNAMICS

Principle equilibrium

© 2024 chempedia.info