Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epoxy mechanical properties

The catalytically functioning curing agents do not directly participate in the crosslinked network but promote reactions between epoxy groups themselves. Tertiary amines as well as boron trifluoride type complexes are effective catalytic agents. Excellent discussions of the specific curing agents, their reactivity with epoxy and their effect on epoxy mechanical properties are available in the literature 4 6I. [Pg.5]

Alteration of this epoxy structure is the result of the fact that the epoxy molecules are both reacting and diffusing at the same time. This process forms a concentration gradient with a high epoxy monomer concentration at the surface which gradually reduces to the bulk concentration away from the surface. The properties of an epoxy with an excess of resin can be quite different from the stoichiometric amount. Figure 2, for example, illustrated the alteration of cured epoxy mechanical properties with epoxy/amine ratio. Excess epoxy or less than the stoichiometric amount of amine produces a brittle material if the mixture is cured in the same manner as the stoichiometric amount (Fig. 2). The stoichiometric sample has the lowest modulus while excess amine produces increased brittleness. The potential for variation in local properties within the epoxy due to the presence of a 200 nm or less layer must be considered. [Pg.16]

Crosslink density is another fector which governs epoxy mechanical properties. Crosslink density is the number of effective crosslinks per unit volume and is quantified by dividing the number of backbone atoms, n, by the number of crosslinks, . ... [Pg.495]

Numerous avenues to produce these materials have been explored (128—138). The synthesis of two new fluorinated bicycHc monomers and the use of these monomers to prepare fluorinated epoxies with improved physical properties and a reduced surface energy have been reported (139,140). The monomers have been polymerized with the diglycidyl ether of bisphenol A, and the thermal and mechanical properties of the resin have been characterized. The resulting polymer was stable up to 380°C (10% weight loss by tga). [Pg.540]

Mechanical properties of mbber-modifted epoxy resins depend on the extent of mbber-phase separation and on the morphological features of the mbber phase. Dissolved mbber causes plastic deformation and necking at low strains, but does not result in impact toughening. The presence of mbber particles is a necessary but not sufficient condition for achieving impact resistance. Optimum properties are obtained with materials comprising both dissolved and phase-separated mbber (305). [Pg.422]

Vinyl ester resins generally offer mechanical properties superior to those of polyester matrices but at an increased cost. Vinyl esters are chemically similar to epoxy resins but are manufactured via a cold-curing process similar to that used in the manufacture of polyester resins. Vinyl esters offer superior resistance to water and chemical attack and are used in such appHcations as underground pipes, tank liners, and storage tanks (see Vinyl polymers). [Pg.7]

Table 5. Mechanical Properties of High Performance Epoxy Resins in Unreinforced Resin Castings... Table 5. Mechanical Properties of High Performance Epoxy Resins in Unreinforced Resin Castings...
Polynuclear Phenol—Glycidyl Ether-Derived Resins. This is one of the first commercially available polyfunctional products. Its polyfunctionahty permits upgrading of thermal stabiUty, chemical resistance, and electrical and mechanical properties of bisphenol A—epoxy systems. It is used in mol ding compounds and adhesives. [Pg.364]

Table 26.11 Mechanical properties of epoxy-glass cloth laminates... Table 26.11 Mechanical properties of epoxy-glass cloth laminates...
The mechanical properties of the laminates are somewhat poorer than observed with phenolic and melamine laminates. Tensile and flexural strength figures are typically about 20% less than for the corresponding P-F and M-F materials and about 60% of values for epoxy laminates. [Pg.830]

Radiation curing of epoxies with cationic initiators is well known [20—28]. UV-visible light has been the predominant radiation source the process has been limited to thin coatings due to the low penetration of the visible-UV light [22,23], Thermal and mechanical properties of these materials are low and the curing is incomplete. Several studies have shown that commercially available epoxies with various cationic initiators can be polymerized with EB curing [20,29-34]. [Pg.1022]

As an illustration of the results of the measurements just described, the mechanical properties for four unidirectionally reinforced composite materials, glass-epoxy, boron-epoxy, graphite-epoxy, and Kevlar 49 -... [Pg.100]

In one series of laboratory tests carried out to find the optimum wear resistance of heavy-duty epoxy resin flooring compositions, a number of different abrasion resistant materials were evaluated using BS 416, employing three different epoxy resin binders which themselves had significantly differing chemical compositions and mechanical properties. The results of this work, which was carried out under dry conditions, are given in Table 9.1. As can be seen from the table, the selection of the abrasion-resistant material and the resin matrix both influence the abrasion resistance of the system, although the abrasive material incorporated appears to play a more cmcial role. [Pg.105]

Kamon, T., Furukawa, H. Curing Mechanisms and Mechanical Properties of Cured Epoxy Resins. Vol. 80, pp. 173 — 202. [Pg.154]

The evaluation of the components of the tinplate container showed that the preferred enamel for irradiation processing was the epoxy phenolic the preferred end-sealing compound was the blend of cured and uncured isobutylene—isoprene copolymer. Component testing of tinplate and solder for possible changes in mechanical properties, microstructure, and corrosion resistance indicated that the radiation caused... [Pg.40]

Phthalazinone, 355 synthesis of, 356 Phthalic anhydride, 101 Phthalic anhydride-glycerol reaction, 19 Physical properties. See also Barrier properties Dielectric properties Mechanical properties Molecular weight Optical properties Structure-property relationships Thermal properties of aliphatic polyesters, 40-44 of aromatic-aliphatic polyesters, 44-47 of aromatic polyesters, 47-53 of aromatic polymers, 273-274 of epoxy-phenol networks, 413-416 molecular weight and, 3 of PBT, PEN, and PTT, 44-46 of polyester-ether thermoplastic elastomers, 54 of polyesters, 32-60 of polyimides, 273-287 of polymers, 3... [Pg.593]

Siloxane containing interpenetrating networks (IPN) have also been synthesized and some properties were reported 59,354 356>. However, they have not received much attention. Preparation and characterization of IPNs based on PDMS-polystyrene 354), PDMS-poly(methyl methacrylate) 354), polysiloxane-epoxy systems 355) and PDMS-polyurethane 356) were described. These materials all displayed two-phase morphologies, but only minor improvements were obtained over the physical and mechanical properties of the parent materials. This may be due to the difficulties encountered in controlling the structure and morphology of these IPN systems. Siloxane modified polyamide, polyester, polyolefin and various polyurethane based IPN materials are commercially available 59). Incorporation of siloxanes into these systems was reported to increase the hydrolytic stability, surface release, electrical properties of the base polymers and also to reduce the surface wear and friction due to the lubricating action of PDMS chains 59). [Pg.62]

Other reports on the morphology and mechanical behavior of organosiloxane containing copolymeric systems include polyurethanes 201 202), aliphatic 185, 86) and aromatic117,195> polyesters, polycarbonates 233 236>, polyhydroxyethers69,311, siloxane zwitterionomers 294 295) and epoxy networks 115>. All of these systems display two phase morphologies and composition dependent mechanical properties, as expected. [Pg.68]


See other pages where Epoxy mechanical properties is mentioned: [Pg.522]    [Pg.564]    [Pg.390]    [Pg.199]    [Pg.522]    [Pg.564]    [Pg.390]    [Pg.199]    [Pg.532]    [Pg.320]    [Pg.11]    [Pg.7]    [Pg.23]    [Pg.26]    [Pg.485]    [Pg.370]    [Pg.371]    [Pg.152]    [Pg.426]    [Pg.798]    [Pg.1009]    [Pg.1017]    [Pg.6]    [Pg.360]    [Pg.427]    [Pg.799]    [Pg.802]    [Pg.835]    [Pg.105]    [Pg.106]    [Pg.440]    [Pg.149]    [Pg.36]    [Pg.60]    [Pg.317]    [Pg.317]   
See also in sourсe #XX -- [ Pg.89 , Pg.95 ]




SEARCH



Carbon epoxy mechanical properties

Dynamic mechanical properties epoxy resins

Dynamic mechanical properties epoxy-amine system

Epoxy dynamic mechanical properties

Epoxy mechanics

Epoxy nanocomposites mechanical properties

Epoxy properties

Epoxy resin xvi mechanical properties

Epoxy resins mechanical properties

Epoxy thermoplastics amorphous, mechanical properties

Epoxy thermoplastics crystalline, mechanical properties

Epoxy thermoplastics mechanical properties

Mechanical properties of epoxies

Mechanical properties of epoxies resins

Polyester-epoxy blend, mechanical properties

Polyester-epoxy matrix, mechanical properties

SWNT/epoxy composite mechanical properties

© 2024 chempedia.info