Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epoxides carbonyl compound conversions

Lithium perchlorate-diethyl ether promotes the chemo- and regioselective conversion of epoxides to carbonyl compounds (e.g., 126 127), a reaction which is thought to proceed via... [Pg.56]

Examples of the use of dimethylsulfonium methylide and dimethylsulfoxonium methylide are listed in Scheme 2.21. Entries 1 to 5 are conversions of carbonyl compounds to epoxides. Entry 6 is an example of cyclopropanation with dimethyl sulfoxonium methylide. Entry 7 compares the stereochemistry of addition of dimethylsulfonium methylide to dimethylsulfoxonium methylide for nornborn-5-en-2-one. The product in Entry 8 was used in a synthesis of a-tocopherol (vitamin E). [Pg.179]

Sulfur ylides are a classic reagent for the conversion of carbonyl compounds to epoxides. Chiral camphor-derived sulfur ylides have been used in the enantioselective synthesis of epoxy-amides <06JA2105>. Reaction of sulfonium salt 12 with an aldehyde and base provides the epoxide 13 in generally excellent yields. While the yield of the reaction was quite good across a variety of R groups, the enantioselectivity was variable. For example benzaldehyde provides 13 (R = Ph) in 97% ee while isobutyraldehyde provides 13 (R = i-Pr) with only 10% ee. These epoxy amides could be converted to a number of epoxide-opened... [Pg.73]

Zeolites have also been described as efficient catalysts for acylation,11 for the preparation of acetals,12 and proved to be useful for acetal hydrolysis13 or intramolecular lactonization of hydroxyalkanoic acids,14 to name a few examples of their application. A number of isomerizations and skeletal rearrangements promoted by these porous materials have also been reported. From these, we can underline two important industrial processes such as the isomerization of xylenes,2 and the Beckmann rearrangement of cyclohexanone oxime to e-caprolactam,15 which is an intermediate for polyamide manufacture. Other applications include the conversion of n-butane to isobutane,16 Fries rearrangement of phenyl esters,17 or the rearrangement of epoxides to carbonyl compounds.18... [Pg.33]

There is ample evidence in the literature for conversion of reactive hydrocarbons to carbonyl compounds by autoxidation. In coals, the final products of autoxidation under the conditions used in the present study could be a mixture of carbonyl and carboxylic acid surface groups. Under mild oxidation conditions, a different set of functional groups such as ethers as proposed by Liotta et al. or epoxides as suggested in Scheme V could be formed. There are numerous examples of alkoxy radicals rearranging to epoxides . Choi and Stock have shown that ethers can be produced from benzhydrol structures, which are invoked as intermediates in Scheme IV. At higher temperatures, the epoxides and ethers are unstable and may rearrange to carbonyl compounds. [Pg.310]

A biphasic system consisting of the ionic liquid [BMIM]PF6 and water was used for the epoxidation reactions of a, 3-unsaturated carbonyl compounds with hydrogen peroxide as an oxidant at room temperature 202). This biphasic catalytic system compared favorably with the traditional phase transfer catalysts. For example, under similar conditions (15°C and a substrate/NaOH ratio of five), the [BMIM]PF6/H20 biphasic system showed a mesityl oxide conversion of 100% with 98% selectivity to oc, 3-epoxyketone, whereas the phase-transfer catalyst with tet-rabutylammonium bromide in a CH2CI2/H2O biphasic system gave a conversion of only 5% with 85% selectivity. [Pg.202]

Berkessel and Sklorz screened a variety of potential co-ligands for the Mn-tmtacn/H202 catalyzed epoxidation reaction and found that ascorbic acid was the most efficient one. With this activator the authors could oxidize the terminal olefins 1-octene and methyl acrylate with full conversion and yields of 83% and 97%, respectively, employing less than 0.1% of the metal complex (Scheme 86). Furthermore, with E- and Z-l-deuterio-1-octene as substrates, it was shown that the oxygen transfer proceeded stereoselectively with almost complete retention of configuration (94 2%). Besides the epoxidation, also the oxidation of alcohols to carbonyl compounds could be catalyzed by this catalytic system (see also Section in.C). [Pg.447]

Ylides based upon sulfur are the most generally useful in these cyclopropane-forming reactions.133 Early work in this area was done with the simple dimethyloxysulfonium methylide (9) derived from dimethyl sulfoxide. The even simpler dimethylsulfonium methylide (10) was studied at the same time as a reagent primarily for the conversion of carbonyl compounds into epoxides.134 Somewhat later, other types of sulfur ylides were developed, among which the nitrogen-substituted derivatives such as (11) are... [Pg.987]

Epoxidation of vinylsilanes will lead to silyl epoxides, which can be transformed into the carbonyl compounds 168 and 169 upon treatment with acid (equations 143 and 144)36,257,258 Conversion of the vinylsilane 170 into methyl enol ether 171 has recently... [Pg.1842]

V. G. Sankararaman, S. Chemo- and regiose-lective conversion of epoxides to carbonyl compounds in 5 M LiCl04-Et20 medium. J. Org. Chem. 1996, 61, 1877-1879. [Pg.136]

The deoxygenation of epoxides is not of great preparative value since it involves some loss of stereochemical integrity and the alkenes produced are more readily approached in other ways. Reductive cleavage of ozonides, for example, using triphenylphosphine, commonly forms part of the ozonolysis procedure for conversion of alkenes into carbonyl compounds. If a carbonyl compound is treated with an appropriate P(III) reagent then the reverse process may occur—reductive coupling to form a new C=C double bond. This has found a particularly important... [Pg.51]

The oxidative rearrangement of allylic alcohols to a -unsaturated ketones or aldehydes is one of the most widely used synthetic reactions in this group, and forms part of a 1,3-carbonyl transposition sequence. Scheme 7 shows this reaction and the related conversion of the allylic alcohol to an a, -epoxy carbonyl compound. Chromate reagents induce some allylic alcohol substrates to undergo a dirMted epoxidation of the alkene without rearrangement, but this reaction is beyond the scope of the present discussion. [Pg.821]

Tri(organoseleno)boranes 35 are prepared from boron trihalides and organic selenolates as stable compounds (Scheme 35) [63]. These selenoboranes have been shown to be useful for the conversion of carbonyl compounds into seleno-acetals 36 [64] and the selective ring opening of epoxides [65]. Recently, it was reported that tri(phenylseleno)borane reacts with cyclic ethers to produce m-hydroxyalkyl phenyl selenides 37 in the presence of a catalytic amount of Lewis acid [43]. [Pg.70]

Sodium hypochlorite is used for the epoxidation of double bonds [659, 691] for the oxidation of primary alcohols to aldehydes [692], of secondary alcohols to ketones [693], and of primary amines to carbonyl compounds [692] for the conversion of benzylic halides into acids or ketones [690] for the oxidation of aromatic rings to quinones [694] and of sulfides to sulfones [695] and, especially, for the degradation of methyl ketones to carboxylic acids with one less carbon atom [655, 696, 697, 695, 699] and of a-amino acids to aldehydes with one less carbon [700]. Sodium hypochlorite is also used for the reoxidation of low-valence ruthenium compounds to ruthenium tetroxide in oxidations by ruthenium trichloride [701]. [Pg.27]

The incorporation of Ti into various framework zeolite structures has been a very active research area, particularly during the last 6 years, because it leads to potentially useful catalysts in the oxidation of various organic substrates with diluted hydrogen peroxide [1-7]. The zeolite structures, where Ti incorporation has been achieved are ZSM-5 (TS-1) [1], ZSM-11 (TS-2) [2] ZSM-48 [3] and beta [4]. Recently, mesoporous titanium silicates Ti-MCM-41 and Ti-HMS have also been reported [5]. TS-1 and TS-2 were found to be highly active and selective catalysts in various oxidation reactions [6,7]. All other Ti-modified zeolites and molecular sieves had limited but interesting catalytic activities. For example, Ti-ZSM-48 was found to be inactive in the hydroxylation of phenol [8]. Ti-MCM-41 and Ti-HMS catalyzed the oxidation of very bulky substrates like 2,6-di-tert-butylphenol, norbomylene and a-terpineol [5], but they were found to be inactive in the oxidation of alkanes [9a], primary amines [9b] and the ammoximation of carbonyl compounds [9a]. As for Ti-P, it was found to be active in the epoxidation of alkenes and the oxidation of alkanes and alcohols [10], even though the conversion of alkanes was very low. Davis et al. [11,12] also reported that Ti-P had limited oxidation and epoxidation activities. In a recent investigation, we found that Ti-P had a turnover number in the oxidation of propyl amine equal to one third that of TS-1 and TS-2 [9b]. As seen, often the difference in catalytic behaviors is not attributable to Ti sites accessibility. [Pg.309]

The combination of Ti(OPr )4 and (BulO)2 or Bu 02I I has been utilized in a number of organic transformations including the Sharpless epoxidation,416 the conversion of alcohols to carbonyl compounds,417 the oxidation of phenols to quinones or ketols,418 and the oxidation of Ti enolates to o-hydroxyketones.419... [Pg.54]

In 1958, Rubottom and co-workers introduced an oxidative methodology, which first requires the conversion of a carbonyl compound to either an enol silane or silyl enol ether. As generated, the enol silane 3, for example, is then treated with m-chloroperbenzoic acid (m-CPBA) to form the a-hydroxy carbonyl compound 4 following epoxidation and desilylation.3... [Pg.23]

The conversion of epoxides into carbonyl compounds is an irreversible reaction. At 400° ethylene oxide (oxirane) passes into acetaldehyde, and at 500° propylene oxide (1-methyloxirane) gives a 2 1 mixture of propion-... [Pg.1058]


See other pages where Epoxides carbonyl compound conversions is mentioned: [Pg.44]    [Pg.316]    [Pg.282]    [Pg.153]    [Pg.7]    [Pg.105]    [Pg.208]    [Pg.41]    [Pg.92]    [Pg.241]    [Pg.44]    [Pg.334]    [Pg.291]    [Pg.237]    [Pg.412]    [Pg.170]    [Pg.6580]    [Pg.199]    [Pg.92]    [Pg.121]    [Pg.199]    [Pg.282]    [Pg.1239]    [Pg.172]    [Pg.268]    [Pg.144]    [Pg.230]    [Pg.425]    [Pg.425]    [Pg.227]   


SEARCH



Conversion compounds

Epoxidation compounds

Epoxidations compounds

Epoxide carbonylation

Epoxide compounds

Epoxides carbonyl compounds

Epoxides carbonylation

Epoxides compounds

Epoxides conversion

© 2024 chempedia.info