Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methylating enzyme activity

Catalysis by flavoenzymes has been reviewed and various analogues of FAD have been prepared e.g. P -adenosine-P -riboflavin triphosphate and flavin-nicotinamide dinucleotide ) which show little enzymic activity. The kinetic constants of the interaction between nicotinamide-4-methyl-5-acetylimidazole dinucleotide (39) and lactic dehydrogenase suggest the presence of an anionic group near the adenine residue at the coenzyme binding site of the enzyme. ... [Pg.135]

Each fruit has specific quantities and ratio of pectin, hemicelluloses and cellulose. These polysaccharides are important concerning enzymes activities required to produce juices and concentrates. Moreover, even if molecular weight and methylation degree of the pectin are specific for each fruit, during the fruit maturation, endogenous pectinases depolymerases and esterase are changing the pectin characteristics This broad variability of raw material makes difficult the standardisation of fruits processing. [Pg.453]

Fungal cutinase catalyzes hydrolysis of model substrates and in particular p-nitrophenyl esters of short chain fatty acids, providing a convenient spectro-photometric assay for this enzyme activity [101,102,116]. Hydrolysis of model esters by this cutinase showed the high degree of preference of this enzyme for primary alcohol ester hydrolysis. Wax esters and methyl esters of fatty acids were hydrolyzed at low rates. Alkane-2-ol esters were hydrolyzed much more slowly than wax esters and esters of mid-chain secondary alcohols were not... [Pg.30]

Dihydroxybenzoic acid (DHB) is also a commonly used tool to measure the pharmacological effects of HIF-la stabilization via PHD inhibition. Recently, it was shown that mice pretreated with DHB (100 mg/kg, i.p.) showed a marked resistance to the neurotoxic effects of l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) via protection of dopaminergic cell loss and striatal denervation. Importantly, this protection was seen to coincide with HIF-la stabilization, and the prevention of the MPTP-induced loss of ferroportin and striatal iron. Additionally, in these studies, DHB was also observed to block MPTP-induced reduction in mitochondrial pyruvate dehydrogenase, at both the mRNA level and through the measurement of enzyme activity in midbrain substantia nigra [26]. [Pg.128]

In the Table 2 the methyl oleate content in the reaction system and the immobilized enzyme activity, towards the transesterification reaction, are reported. [Pg.260]

In cobalamin-E (cblE) disease there is a failure of methyl-B12 to bind to methionine synthase. It is not known if this reflects a primary defect of methionine synthase or the absence of a separate enzyme activity. Patients manifest megaloblastic changes with a pancytopenia, homocystinuria and hypomethioninemia. There is no methylmalonic aciduria. Patients usually become clinically manifest during infancy with vomiting, developmental retardation and lethargy. They respond well to injections of hydroxocobalamin. [Pg.677]

Methylenetetrahydrofolate reductase (MTHFR) catalyzes the NAD(P)H-dependent reduction of 5,10-methylenetetrahydrofolate (CH2-THF) to 5-methyltetrahydrofolate (CH3-THF). CH3-THF then serves as a methyl donor for the synthesis of methionine. The MTHFR proteins and genes from mammalian liver and E. coli have been characterized,12"15 and MTHFR genes have been identified in S. cerevisiae16 and other organisms. The MTHFR of E. coli (MetF) is a homotetramer of 33-kDa subunits that prefers NADH as reductant,12 whereas mammalian MTHFRs are homodimers of 77-kDa subunits that prefer NADPH and are allosterically inhibited by AdoMet.13,14 Mammalian MTHFRs have a two-domain structure the amino-terminal domain shows 30% sequence identity to E. coli MetF, and is catalytic the carboxyterminal domain has been implicated in AdoMet-mediated inhibition of enzyme activity.13,14... [Pg.19]

Emil Fischer developed a strong interest in the structural requirements for enzyme activity as the result of effects of changes in the structures of the a-and -methyl glucosides on their properties as substrates for the enzymes invertin and emulsin, which, as we have seen, he had shown to be a- and yS-glucosidases, respectively. As already mentioned, he was fascinated in 1895 by the fact that emulsin had no effect on either the a- or /2-methyl xylosides (33). In a 1912 publication with Karl Zach (34), he reported that -methyl 6-deoxyglucoside was hydrolyzed by emulsin and wrote ... [Pg.13]

Figure 3. Schematic representation of the interplay of the various epigenetic marks and its therapeutic potential DNA methylation causes the concomitant deacetylation of the histones, whereby it negatively (—) coixelates with histone acetylation and positively (+) with histone methylation, particularly the repressive marks. The active methylation marks correlate positively with histone acetylation. The loss of activity or the loss or mistargeting of these activities are the most common cause of epigenetic diseases. Shown in the boxes are the small molecular modulators (a, activators or i, inhibitors) of the various enzymes that have potential to develop epigenetic therapeutics... Figure 3. Schematic representation of the interplay of the various epigenetic marks and its therapeutic potential DNA methylation causes the concomitant deacetylation of the histones, whereby it negatively (—) coixelates with histone acetylation and positively (+) with histone methylation, particularly the repressive marks. The active methylation marks correlate positively with histone acetylation. The loss of activity or the loss or mistargeting of these activities are the most common cause of epigenetic diseases. Shown in the boxes are the small molecular modulators (a, activators or i, inhibitors) of the various enzymes that have potential to develop epigenetic therapeutics...
Physiologic electron acceptors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) produced similar effects on cathodic hydrogen evolution from mild steel as achieved with methyl viologen (Bryant and Laishley 1990). These experimental results showed that the mild steel rods reacting with phosphate can preferential act as electron donors for the reduction of low-potential electron carriers. All hydrogenases catalyze a reversible reaction for the formation and oxidation of hydrogen, which requires low-potential electron carriers for the enzyme activity (Church et al. 1988 Fauque et al. 1988). [Pg.254]

Fig. 13.3 Clinical response, adverse effects, and hematological parameters were determined and correlated with thiopurine methyl transferase (TPMT) enzyme activity and genotype in 106 patients with inflammatory bowel disease. The odds of achieving complete remission (CR) to azathioprine is approx, five times lower if TPMT is greater than 14 units/mL red blood cells (RBCs). (Reproduced from ref 39.)... Fig. 13.3 Clinical response, adverse effects, and hematological parameters were determined and correlated with thiopurine methyl transferase (TPMT) enzyme activity and genotype in 106 patients with inflammatory bowel disease. The odds of achieving complete remission (CR) to azathioprine is approx, five times lower if TPMT is greater than 14 units/mL red blood cells (RBCs). (Reproduced from ref 39.)...
Thiopurine methyltransferase methylates 6-mercaptopurine, a commonly used treatment for childhood acute lymphocytic leukemia, reducing its conversion to the active form of the drug. Approximately 10% of patients have intermediate enzyme activity, and 0.3% are deficient for TPMT activity. Intermediate activity patients have a greater incidence of thiopurine toxicity, whereas TPMT-deficient patients have severe or fatal hematological toxicity from 6-mercaptopurine therapy. In one study, patients deficient for TPMT tolerated only 7% of a 2.5-yr mercaptopurine treatment regimen. Patients with intermediate TPMT activity tolerated 65% of total weeks of therapy and patients with normal TPMT activity tolerated 84% of total weeks of therapy (3). [Pg.438]


See other pages where Methylating enzyme activity is mentioned: [Pg.56]    [Pg.568]    [Pg.56]    [Pg.568]    [Pg.325]    [Pg.96]    [Pg.941]    [Pg.92]    [Pg.16]    [Pg.102]    [Pg.112]    [Pg.29]    [Pg.166]    [Pg.17]    [Pg.151]    [Pg.231]    [Pg.315]    [Pg.179]    [Pg.85]    [Pg.93]    [Pg.373]    [Pg.1156]    [Pg.383]    [Pg.149]    [Pg.197]    [Pg.60]    [Pg.186]    [Pg.240]    [Pg.169]    [Pg.64]    [Pg.184]    [Pg.288]    [Pg.79]    [Pg.14]    [Pg.410]    [Pg.400]    [Pg.216]    [Pg.154]    [Pg.417]    [Pg.6]   
See also in sourсe #XX -- [ Pg.154 ]




SEARCH



Active methyl

© 2024 chempedia.info