Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino-terminal domains

CDK2 has two domains, a small (85 residue) amino-terminal domain comprising a single a helix and a five-stranded p sheet and a larger (213 residues) domain that is mainly a-helical (Figure 6.17a). The cofactor in the... [Pg.107]

Mondragon, A., et al. Structure of the amino-terminal domain of phage 434 repressor at 2.0 A resolution. [Pg.148]

The most remarkable feature of the antibody molecule is revealed by comparing the amino acid sequences from many different immunoglobulin IgG molecules. This comparison shows that between different IgGs the amino-terminal domain of each polypeptide chain is highly variable, whereas the remaining domains have constant sequences. A light chain is thus built up from one amino-terminal variable domain (Vl) and one carboxy-terminal constant domain (Cl), and a heavy chain from one amino-terminal variable domain (Vh), followed by three constant domains (Chi, Ch2. and Chs). [Pg.301]

Fnsion peptide (amino terminal domain of gp41)... [Pg.178]

Figure 5-8. Domain structure. Protein kinases contain two domains. The upper, amino terminal domain binds the phosphoryl donor ATP (light blue). The lower, carboxyl terminal domain is shown binding a synthetic peptide substrate (dark blue). Figure 5-8. Domain structure. Protein kinases contain two domains. The upper, amino terminal domain binds the phosphoryl donor ATP (light blue). The lower, carboxyl terminal domain is shown binding a synthetic peptide substrate (dark blue).
The product of the repressor gene, the 236-amino-acid, 27 IcDa repressor protein, exists as a two-domain molecule in which the amino terminal domain binds to operator DNA and the carboxyl terminal domain promotes the association of one repressor protein with another to form a dimer. A dimer of repressor molecules binds to operator DNA much more tighdy than does the monomeric form (Figure 39-6A to 39-6C). [Pg.380]

Chromatin remodeling, transcription factor modification by various enzyme activities, and the communication between the nuclear receptors and the basal transcription apparatus are accomplished by protein-protein interactions with one or more of a class of coregulator molecules. The number of these coregulator molecules now exceeds 100, not counting species variations and splice variants. The first of these to be described was the CREB-binding protein, CBP. CBP, through an amino terminal domain, binds to phosphorylated serine 137 of CREB and mediates transactivation in response to cAMP. It thus is described as a coactivator. CBP and... [Pg.471]

Figure 47-10. Schematic diagram of the structure of human L-selectin. The extracellular portion contains an amino terminal domain homologous to C-type lectins and an adjacent epidermal growth factor-like domain. These are followed by a variable number of complement regulatory-like modules (numbered circles) and a transmembrane sequence (blackdiamond). A short cytoplasmic sequence (open rectangle) is at the carboxyl terminal. The structures of P- and E-selectin are similar to that shown except that they contain more complement-regulatory modules.The numbers of amino acids in L-, P-, and E- selectins, as deduced from the cDNA sequences, are 385,789, and 589, respectively. (Reproduced, with permission, from Bevilacqua MP, Nelson RM Selectins. J Clin Invest 1993 91 370.)... Figure 47-10. Schematic diagram of the structure of human L-selectin. The extracellular portion contains an amino terminal domain homologous to C-type lectins and an adjacent epidermal growth factor-like domain. These are followed by a variable number of complement regulatory-like modules (numbered circles) and a transmembrane sequence (blackdiamond). A short cytoplasmic sequence (open rectangle) is at the carboxyl terminal. The structures of P- and E-selectin are similar to that shown except that they contain more complement-regulatory modules.The numbers of amino acids in L-, P-, and E- selectins, as deduced from the cDNA sequences, are 385,789, and 589, respectively. (Reproduced, with permission, from Bevilacqua MP, Nelson RM Selectins. J Clin Invest 1993 91 370.)...
Monteclaro FS, Charo IF. The amino-terminal domain of CCR2 is both necessary and sufficient for high affinity binding of monocyte chemoattractant protein 1. Receptor activation by a pseudo-tethered ligand. J Biol Chem 1997 272(37) 23186-23190. [Pg.50]

Cormier EG, Persuh M, Thompson DA, et al. Specific interaction of CCR5 amino-terminal domain peptides containing sulfotyrosines with HIV-1 envelope glycoprotein gpl20. Proc Natl Acad Sci U S A 2000 97(ll) 5762-5767. [Pg.51]

Figure 12.4 Proposed path for the intracellular transfer of Cu(I) by Atxl. Copper destined for incorporation into the vascular multicopper oxidase Fet3 requires both Ctrl and Ccc2. Cytoplasmic Cu(I)-Atxl, but not apo-Atxl, associates with the amino-terminal domain of Ccc2 and Cu(I) is transferred to the latter. (Inset) A proposed mechanism for the exchange of Cu(I) involving two- and three-coordinate Cu-bridged intermediates. The human homologues of Atxl (Hahl), Ccc2 (Menkes and Wilson s proteins) and Fet3 (ceruloplasmin) are likely to employ similar mechanisms. Reprinted with permission from Pufahl et al., 1997. Copyright (1997) American Association for the Advancement of Science. Figure 12.4 Proposed path for the intracellular transfer of Cu(I) by Atxl. Copper destined for incorporation into the vascular multicopper oxidase Fet3 requires both Ctrl and Ccc2. Cytoplasmic Cu(I)-Atxl, but not apo-Atxl, associates with the amino-terminal domain of Ccc2 and Cu(I) is transferred to the latter. (Inset) A proposed mechanism for the exchange of Cu(I) involving two- and three-coordinate Cu-bridged intermediates. The human homologues of Atxl (Hahl), Ccc2 (Menkes and Wilson s proteins) and Fet3 (ceruloplasmin) are likely to employ similar mechanisms. Reprinted with permission from Pufahl et al., 1997. Copyright (1997) American Association for the Advancement of Science.
Adams, C.A., Kar, S.R., Hopper, J.E., and Fried, M.G. (2004) Self-association of the amino-terminal domain of the yeast TATA-binding protein./. Biol. Chem. 279, 1376-1382. [Pg.1041]

Methylenetetrahydrofolate reductase (MTHFR) catalyzes the NAD(P)H-dependent reduction of 5,10-methylenetetrahydrofolate (CH2-THF) to 5-methyltetrahydrofolate (CH3-THF). CH3-THF then serves as a methyl donor for the synthesis of methionine. The MTHFR proteins and genes from mammalian liver and E. coli have been characterized,12"15 and MTHFR genes have been identified in S. cerevisiae16 and other organisms. The MTHFR of E. coli (MetF) is a homotetramer of 33-kDa subunits that prefers NADH as reductant,12 whereas mammalian MTHFRs are homodimers of 77-kDa subunits that prefer NADPH and are allosterically inhibited by AdoMet.13,14 Mammalian MTHFRs have a two-domain structure the amino-terminal domain shows 30% sequence identity to E. coli MetF, and is catalytic the carboxyterminal domain has been implicated in AdoMet-mediated inhibition of enzyme activity.13,14... [Pg.19]

Brauner-Osbome, H., Jensen, A. A., Sheppard, P. O., O Hara, P., and Krogsgaard-Larsen, P. (1999) The agonist-binding domain of the calcium-sensing receptor is located at the amino-terminal domain. J. Biol. Chem. 274,18382-18386. [Pg.76]

Peltekova, V., Han, G., Soleymanlou, N., and Hampson, D. R. (2000) Constraints on proper folding of the amino terminal domains of group III metabotropic glutamate receptors. Mol. Brain. Res. 76,180-190. [Pg.77]

Wang, J., Trudeau, M.C., Zappia, A.M. and Robertson, G.A. (1998) Regulation of deactivation by an amino terminal domain in human ether-a-go-go-related gene potassium channels. The Journal of General Physiology, 112, 637-647. [Pg.103]

A commonly used staining method for the cell nucleolus is based on silver nanoparticles [54], The proteins of the nucleolus, such as nucleolin, are known to have high affinity to silver ions due to their amino-terminal domain. Subsequent reduction leads to the formation of the silver nanoparticles stain. In spite of all the efforts, a general and definitive conclusion regarding the attraction between silver... [Pg.317]

SuEE, S., Misea, S., Saidi, L. F., and Hurley, J. H., Structure of the GAT domain of human GGAl a syntaxin amino-terminal domain fold in an endosomal trafScking adaptor, Proc. Natl. Acad. Sci. USA, 2003, 100, 4451. [Pg.347]

Xu W, Edmondson DG, Roth SY (1998) Mammalian GCN5 and PICAF acetyltransferases have homologous amino-terminal domains important for recognition of nucleosomal substrates. Mol Cell Biol 18 5659-5669... [Pg.262]

Grenert JP, Sullivan WP, Fadden P, et al. (1997) The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem. 272, 23843-23850. [Pg.376]


See other pages where Amino-terminal domains is mentioned: [Pg.449]    [Pg.543]    [Pg.558]    [Pg.561]    [Pg.781]    [Pg.29]    [Pg.381]    [Pg.390]    [Pg.225]    [Pg.240]    [Pg.63]    [Pg.63]    [Pg.64]    [Pg.140]    [Pg.271]    [Pg.303]    [Pg.46]    [Pg.751]    [Pg.51]    [Pg.51]    [Pg.52]    [Pg.129]    [Pg.131]    [Pg.64]    [Pg.346]    [Pg.379]   
See also in sourсe #XX -- [ Pg.39 ]




SEARCH



Amino Terminal Domain Structures and Structural Motifs

Amino terminal

Amino-terminal domain and

Amino-terminal domain, collagen

Terminal domains

The Amino Terminal Domain (ATD)

© 2024 chempedia.info