Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enolate compounds metal enolates

Enolate Initiators. In principle, ester enolate anions should represent the ideal initiators for anionic polymeri2ation of alkyl methacrylates. Although general procedures have been developed for the preparation of a variety of alkaU metal enolate salts, many of these compounds are unstable except at low temperatures (67,102,103). Usehil initiating systems for acrylate polymeri2ation have been prepared from complexes of ester enolates with alkak metal alkoxides (104,105). [Pg.240]

Catalytic hydrogenation of the 14—15 double bond from the face opposite to the C18 substituent yields (196). Compound (196) contains the natural steroid stereochemistry around the D-ring. A metal-ammonia reduction of (196) forms the most stable product (197) thermodynamically. When R is equal to methyl, this process comprises an efficient total synthesis of estradiol methyl ester. Birch reduction of the A-ring of (197) followed by acid hydrolysis of the resultant enol ether allows access into the 19-norsteroids (198) (204). [Pg.437]

Lithium-ammonia reduction of l7a-ethyl-19-nortestosterone (68) using Procedure 8a (section V) affords the 4,5a-dihydro compound (69) in 85% yield after a reaction time of 12 minutes after a reaction time of 80 minutes, the yield of (69) is 76%. Lfsing sodium in the same reduction, the yields of compound (69) are 79 and 77 % after reaction times of 8 and 80 minutes respectively. Both the lithium and sodium enolates appear to be reasonably stable in liquid ammonia in the presence of alkali metal. Since the enolate salts are poorly soluble in ammonia, their resistance to protonation by it may be due in part to this factor. [Pg.39]

In recent years this simple picture has been completely transformed and it is now recognized that the alkali metals have a rich and extremely varied coordination chemistry which frequently transcends even that of the transition metals. The efflorescence is due to several factors such as the emerging molecular chemistry of lithium in particular, the imaginative use of bulky ligands, the burgeoning numbers of metal amides, alkoxides, enolates and organometallic compounds, and the exploitation of multidentate... [Pg.91]

Oppenauer oxidation of the enol ether (34) affords the corresponding 17 ketone (37) (the enol ether is stable to the basic oxidation conditions). This ketone affords the corresponding 17a-ethynyl compound on reaction with metal acetylides. Hydrolysis of the enol ether under mild conditions leads directly... [Pg.164]

The complexation of achiral metal enolates by chiral additives, e.g., solvents or complexing agents could, in principle, lead to reagent-induced stereoselectivity. In an early investigation, the Reformatsky reaction of ethyl bromoacetate was performed in the presence of the bidentate ligand (—)-sparteine20. The enantioselectivity of this reaction varies over a wide range and depends on the carbonyl Compound, as shown with bcnzaldehyde and acetophenone. [Pg.580]

High enantioselectivities may be reached using the kinetic controlled Michael addition of achiral tin enolates, prepared in situ, to a,/i-unsaturated carbonyl compounds catalyzed by a chiral amine. The presence of trimethylsilyl trifluoromethanesulfonate as an activator is required in these reactions236. Some typical results, using stoichiometric amounts of chiral amine and various enolates are given below. In the case of the l-(melhylthio)-l-[(trimethylsilyl)thio]ethene it is proposed that metal exchange between the tin(II) trifluoromethanesulfonate and the ketene acetal occurs prior to the 1,4-addition237,395. [Pg.985]

Other organometallic compounds that are hydrolyzed by water are those of sodium, potassium, lithium, zinc, and so on, the ones high in the electromotive series. Enantioselective protonation of lithium enolates and cyclopropyllithium compounds have been reported. When the metal is less active, stronger acids are required. For example, R2Zn compounds react explosively with water, R2Cd slowly, and R2Hg not at all, though the latter can be cleaved with concentrated HCl. How-... [Pg.794]

On the other hand, the enantioselective 1,4-addition of carbanions such as enolates to linear enones is an interesting challenge, since relatively few efficient methods exist for these transformations. The Michael reaction of p-dicarbonyl compounds with a,p-unsaturated ketones can be catalysed by a number of transition-metal compounds. The asymmetric version of this reaction has been performed using chiral diol, diamine, and diphosphine ligands. In the past few years, bidentate and polydentate thioethers have begun to be considered as chiral ligands for this reaction. As an example, Christoffers et al. have developed the synthesis of several S/O-bidentate and S/O/S-tridentate thioether... [Pg.97]

Phosphate groups can also be removed by dissolving-metal reduction. Reductive removal of vinyl phosphate groups is one method for conversion of a carbonyl compound to an alkene.224 (See Section 5.7.2 for other methods.) The required vinyl phosphate esters are obtained by phosphorylation of the enolate with diethyl phospho-rochloridate or /V A /V -tetramethyldiamidophosphorochloridate.225... [Pg.439]

The Reformatsky reaction is a classical reaction in which metallic zinc, an a-haloester, and a carbonyl compound react to give a (i-hydroxyester.162 The zinc and a-haloester react to form an organozinc reagent. Because the carboxylate group can stabilize the carbanionic center, the product is essentially the zinc enolate of the dehalogenated ester.163 The enolate effects nucleophilic attack on the carbonyl group. [Pg.657]

Nitro groups attached to a primary and secondary alkyl group in a highly basic (pH > 13) medium exist as the nitronate (enolate) anions. These anions must be very difficult to reduce by electron transfer and are surely much more difficult to reduce than water. Since the electrohydrogenation of such nitro compounds to the corresponding amines is veiy efficient at Raney metal cathodes in 0.1 to 0.15 M KOH (or NaOH) aqueous alcohol (pH > 13) (12), as... [Pg.12]

In view of the extensive and fruitful results described above, redox reactions of small ring compounds provide a variety of versatile synthetic methods. In particular, transition metal-induced redox reactions play an important role in this area. Transition metal intermediates such as metallacycles, carbene complexes, 71-allyl complexes, transition metal enolates are involved, allowing further transformations, for example, insertion of olefins and carbon monoxide. Two-electron- and one-electron-mediated transformations are complementary to each other although the latter radical reactions have been less thoroughly investigated. [Pg.151]

Still another possibility in the base-catalyzed reactions of carbonyl compounds is alkylation or similar reaction at the oxygen atom. This is the predominant reaction of phenoxide ion, of course, but for enolates with less resonance stabilization it is exceptional and requires special conditions. Even phenolates react at carbon when the reagent is carbon dioxide, but this may be due merely to the instability of the alternative carbonic half ester. The association of enolate ions with a proton is evidently not very different from the association with metallic cations. Although the equilibrium mixture is about 92 % ketone, the sodium derivative of acetoacetic ester reacts with acetic acid in cold petroleum ether to give the enol. The Perkin ring closure reaction, which depends on C-alkylation, gives the alternative O-alkylation only when it is applied to the synthesis of a four membered ring ... [Pg.226]

The isomerization of allylic alcohols provides an enol (or enolate) intermediate, which tautomerizes to afford the saturated carbonyl compound (Equation (8)). The isomerization of allylic alcohols to saturated carbonyl compounds is a useful synthetic process with high atom economy, which eliminates conventional two-step sequential oxidation and reduction.25,26 A catalytic one-step transformation, which is equivalent to an internal reduction/oxidation process, is a conceptually attractive strategy due to easy access to allylic alcohols.27-29 A variety of transition metal complexes have been employed for the isomerization of allylic alcohols, as shown below. [Pg.76]


See other pages where Enolate compounds metal enolates is mentioned: [Pg.1344]    [Pg.140]    [Pg.158]    [Pg.12]    [Pg.208]    [Pg.363]    [Pg.224]    [Pg.8]    [Pg.38]    [Pg.47]    [Pg.296]    [Pg.190]    [Pg.204]    [Pg.296]    [Pg.660]    [Pg.958]    [Pg.794]    [Pg.1023]    [Pg.253]    [Pg.320]    [Pg.23]    [Pg.4]    [Pg.18]    [Pg.21]    [Pg.348]    [Pg.114]    [Pg.140]    [Pg.144]    [Pg.8]    [Pg.208]    [Pg.109]   
See also in sourсe #XX -- [ Pg.964 , Pg.965 , Pg.966 , Pg.967 , Pg.968 , Pg.969 ]




SEARCH



Enolate compound

Enolates compounds

Metal enolate

Metal enolates

© 2024 chempedia.info