Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantioselective applications

Atomistic Modeling of Enantioselection Applications in Chiral Chromatography... [Pg.329]

Monsanto Pioneer in the application of enantioselective hydrogenation first chiral diphosphine ligand (dipamp) with high enantioselectivity. Application to selected products. Activities have been transferred to NSC Technologies, now part of Great Lakes Fine Chemicals. [Pg.313]

Fig. 10 Scheme of the pH-zone-refining mechanism in enantioselective applications, (a) The separation of acidic analytes is considered. Retainer agent trifluoroacetic acid displacer agent ammonia. The enantiomer more strongly associated to the CS is retained longer, (b) Separation of basic analytes. Retainer agent diethylamine displacer agent hydrochloric acid... [Pg.264]

Clearly, there is a need for techniques which provide access to enantiomerically pure compounds. There are a number of methods by which this goal can be achieved . One can start from naturally occurring enantiomerically pure compounds (the chiral pool). Alternatively, racemic mixtures can be separated via kinetic resolutions or via conversion into diastereomers which can be separated by crystallisation. Finally, enantiomerically pure compounds can be obtained through asymmetric synthesis. One possibility is the use of chiral auxiliaries derived from the chiral pool. The most elegant metliod, however, is enantioselective catalysis. In this method only a catalytic quantity of enantiomerically pure material suffices to convert achiral starting materials into, ideally, enantiomerically pure products. This approach has found application in a large number of organic... [Pg.77]

Silyl ethers serve as preeursors of nucleophiles and liberate a nucleophilic alkoxide by desilylation with a chloride anion generated from CCI4 under the reaction conditions described before[124]. Rapid intramolecular stereoselective reaction of an alcohol with a vinyloxirane has been observed in dichloro-methane when an alkoxide is generated by desilylation of the silyl ether 340 with TBAF. The cis- and tru/u-pyranopyran systems 341 and 342 can be prepared selectively from the trans- and c/.y-epoxides 340, respectively. The reaction is applicable to the preparation of 1,2-diol systems[209]. The method is useful for the enantioselective synthesis of the AB ring fragment of gambier-toxin[210]. Similarly, tributyltin alkoxides as nucleophiles are used for the preparation of allyl alkyl ethers[211]. [Pg.336]

Spatial and/or coordinative bias can be introduced into a reaction substrate by coupling it to an auxiliary or controller group, which may be achiral or chiral. The use of chiral controller groups is often used to generate enantioselectively the initial stereocenters in a multistep synthetic sequence leading to a stereochemically complex molecule. Some examples of the application of controller groups to achieve stereoselectivity are shown retrosynthetically in Chart 19. [Pg.50]

The resolution of optically active compounds by gas chromatography with chiral phases is a well-established procedure, and the separation of Al-perfluoto-acetylated ammo acid ester enantiomers m 1967 was the first successful application of enantioselective gas-liquid chromatography [39] Ammo acids have been resolved as their A -trifluoroacetyl esters on chiral diamide phases such as N-lauroyl-L-valineferf-butylamideorAl-docosanoyl-L-valme /ez-r-butylamide [40,41,... [Pg.1030]

Application of this catalytic process was extended to asymmetric intramolecular Diels-Alder reactions. Synthetically useful intermediates with octalin and decalin skeletons were obtained in high optical purity by use of a catalytic amount of the chiral titanium reagent [45] (Scheme 1.57, Table 1.25). The core part of the mevi-nic acids was enantioselectively synthesized by use of this asymmetric intramolecular reaction [46] (Scheme 1.58). [Pg.37]

The interest in chiral titanium(IV) complexes as catalysts for reactions of carbonyl compounds has, e.g., been the application of BINOL-titanium(IV) complexes for ene reactions [8, 19]. In the field of catalytic enantioselective cycloaddition reactions, methyl glyoxylate 4b reacts with isoprene 5b catalyzed by BINOL-TiX2 20 to give the cycloaddition product 6c and the ene product 7b in 1 4 ratio enantio-selectivity is excellent - 97% ee for the cycloaddition product (Scheme 4.19) [28]. [Pg.165]

In an analogous study by Meske, the impact of various oxazaborolidinone catalysts for the 1,3-dipolar cycloaddition reactions between acyclic nitrones and vinyl ethers was studied [31]. Both the diastereo- and the enantioselectivities obtained in this work were low. The highest enantioselectivity was obtained by the application of 100 mol% of the tert-butyl-substituted oxazaborolidinone catalyst 3d [27, 32] in the 1,3-dipolar cycloaddition reaction between nitrone la and ethyl vinyl ether 8a giving endo-9a and exo-9a in 42% and 27% isolated yield, respectively, with up to 20% ee for endo-9a as the best result (Scheme 6.10). [Pg.219]

A rather unexpected discovery was made in connection to these investigations [49]. When the 1,3-dipolar cycloaddition reaction of la with 19b mediated by catalyst 20 (X=I) was performed in the absence of MS 4 A a remarkable reversal of enantioselectivity was observed as the opposite enantiomer of ench-21 was obtained (Table 6.1, entries 1 and 2). This had not been observed for enantioselective catalytic reactions before and the role of molecular sieves cannot simply be ascribed to the removal of water by the MS, since the application of MS 4 A that were presaturated with water, also induced the reversal of enantioselectivity (Table 6.1, entries 3 and 4). Recently, Desimoni et al. also found that in addition to the presence of MS in the MgX2-Ph-BOX-catalyzed 1,3-dipolar addition shown in Scheme 6.17, the counter-ion for the magnesium catalyst also strongly affect the absolute stereoselectivity of the reac-... [Pg.224]

On the basis of this successful application of 23d, this catalyst was applied in a series of reactions (Scheme 6.22). For all eight reactions of nitrones 1 and alkenes 19 in which 23d was applied as the catalyst, diastereoselectivities >90% de were observed, and most remarkably >90% ee is obtained for all reactions involving a nitrone with an aromatic substituent whereas reactions with N-benzyl and N-alkyl nitrones led to lower enantioselectivities [65]. [Pg.228]

In 1997 the application of two different chiral ytterbium catalysts, 55 and 56 for the 1,3-dipolar cycloaddition reaction was reported almost simultaneously by two independent research groups [82, 83], In both works it was observed that the achiral Yb(OTf)3 and Sc(OTf)3 salts catalyze the 1,3-dipolar cycloaddition between nitrones 1 and alkenoyloxazolidinones 19 with endo selectivity. In the first study 20 mol% of the Yb(OTf)2-pyridine-bisoxazoline complex 55 was applied as the catalyst for reactions of a number of derivatives of 1 and 19. The reactions led to endo-selective 1,3-dipolar cycloadditions giving products with enantioselectivities of up to 73% ee (Scheme 6.38) [82]. In the other report Kobayashi et al. described a... [Pg.239]

Another important reaction associated with the name of Sharpless is the so-called Sharpless dihydroxylation i.e. the asymmetric dihydroxylation of alkenes upon treatment with osmium tetroxide in the presence of a cinchona alkaloid, such as dihydroquinine, dihydroquinidine or derivatives thereof, as the chiral ligand. This reaction is of wide applicability for the enantioselective dihydroxylation of alkenes, since it does not require additional functional groups in the substrate molecule ... [Pg.256]

T. A. G. Noctor, Bioanalytical applications of enantioselective high-performance liquid cliromatography in A Practical Approach to Chiral Separations by Liquid Chromatography, Subramanian G (Ed.), VCH, Weinheim, Ch. 12, pp. 357-396 (1994). [Pg.293]

The first successful chiral resolutions through enantioselective membranes have been published recently, but few cases are applicable to the preparative scale, mainly due to mechanical and technical limitations. Low flow rates, saturation of the chiral selectors and loss of enantioselectivity with time are some of the common problems encountered and that should be solved in the near future. [Pg.13]

Ideal chiral selectors to be used in preparative separations should fulfil certain properties. In general, high loadability is one of the most interesting features for large-scale purposes, but high enantioselectivity, high chemical stability, low cost and broad applicability are also very important issues. None of these properties can be considered independently. [Pg.18]

L. J. Brice, W. H. Pirkle, Enantioselective transport through liquid membranes in Chiral separations, applications and technology, S. Ahuja (Ed.), American Chemical Society, Washington... [Pg.22]


See other pages where Enantioselective applications is mentioned: [Pg.774]    [Pg.274]    [Pg.331]    [Pg.1139]    [Pg.1139]    [Pg.655]    [Pg.162]    [Pg.180]    [Pg.22]    [Pg.386]    [Pg.251]    [Pg.318]    [Pg.222]    [Pg.774]    [Pg.274]    [Pg.331]    [Pg.1139]    [Pg.1139]    [Pg.655]    [Pg.162]    [Pg.180]    [Pg.22]    [Pg.386]    [Pg.251]    [Pg.318]    [Pg.222]    [Pg.617]    [Pg.242]    [Pg.179]    [Pg.27]    [Pg.158]    [Pg.92]    [Pg.7]    [Pg.34]    [Pg.126]    [Pg.168]    [Pg.212]    [Pg.242]    [Pg.244]    [Pg.285]    [Pg.218]    [Pg.218]    [Pg.14]    [Pg.17]    [Pg.18]   
See also in sourсe #XX -- [ Pg.437 , Pg.438 , Pg.439 , Pg.440 , Pg.441 , Pg.442 , Pg.443 ]




SEARCH



Applications in Enantioselective Hydrogenation of Alkenes

Critical Factors for the Technical Application of Homogeneous Enantioselective Catalysts

Enantioselective oxidations applications

Further Application of Asymmetric Wittig-type Reactions in Enantioselective Synthesis

Heterogeneous Enantioselective Catalysts in Industrial Research and Application

Immobilization of Transition Metal Complexes and Their Application to Enantioselective Catalysis

Process Development Critical Factors for the Application of (Heterogeneous) Enantioselective Catalysts

Selected Applications of the Catalytic Enantioselective Allylation Reaction in Natural Product Synthesis

© 2024 chempedia.info