Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emulsions monodispersity

Propylene carbonate Nitriles 27.2 No reaction Moderate Emulsion Monodisperse... [Pg.42]

An important step in tire progress of colloid science was tire development of monodisperse polymer latex suspensions in tire 1950s. These are prepared by emulsion polymerization, which is nowadays also carried out industrially on a large scale for many different polymers. Perhaps tire best-studied colloidal model system is tliat of polystyrene (PS) latex [9]. This is prepared with a hydrophilic group (such as sulphate) at tire end of each molecule. In water tliis produces well defined spheres witli a number of end groups at tire surface, which (partly) ionize to... [Pg.2669]

A new process, from Norway, has filled the size gap between emulsion and suspension polymerization techniques [7,8]. This novel polymerization method, the so-called swollen emulsion polymerization has been developed by Ugelstad for producing uniform polymeric particles in the size range of 2-100 /nm. This process comprises successive swelling steps and repolymerizations for increasing the particle size of seed polymer particles by keeping the monodispersity of the seed latex. [Pg.189]

Soapless seeded emulsion copolymerization has been proposed as an alternative method for the preparation of uniform copolymer microspheres in the submicron-size range [115-117]. In this process, a small part of the total monomer-comonomer mixture is added into the water phase to start the copolymerization with a lower monomer phase-water ratio relative to the conventional direct process to prevent the coagulation and monodispersity defects. The functional comonomer concentration in the monomer-comonomer mixture is also kept below 10% (by mole). The water phase including the initiator is kept at the polymerization temperature during and after the addition of initial monomer mixture. The nucleation takes place by the precipitation of copolymer macromolecules, and initially formed copolymer nuclei collide and form larger particles. After particle formation with the initial lower organic phase-water ratio, an oligomer initiated in the continuous phase is... [Pg.217]

It is appropriate to mention here an alternative method for synthesizing monodispersed polymers which was developed by Zimm.67 Emulsion polymerization is initiated by flash photolysis. The second flash terminates the polymers initiated by the first one, starting on a new chain to be terminated by the third flash, and... [Pg.177]

Loudet JC, Poulin P (2003) Monodisperse Aligned Emulsions from Demixing in Bulk Liquid Crystals. 226 173-196... [Pg.235]

Schmitt V, Leal-Calderon F, Bibette J (2003) Preparation of Monodisperse Particles and Emulsions by Controlled Shear. 227 195-215... [Pg.238]

New methods of emulsion polymerization, particularly the use of swelhng agents, are needed to produce monodisperse latexes with a desired size and surface chemistiy. Samples of latex spheres with uniform diameters up to 100 pm are now commercially available. These spheres and other mono-sized particles of various shapes can be used as model colloids to study two- and three-dimensional many-body systems of very high complexity. [Pg.178]

For example, the parameters g = 0.77, h = 0.94, p = 1.4, and C = 0.158 measured for a polymer sample and compared with the plots in Figures 7.11 through 7.13 were most consistent with athree-arm star monodisperse polymer a poly disperse three-arm star would have g= 1.12,/ = 1.05,p= 1.6, and C close to 0.2. °° The second example was poly(vinyl acetate) (PVAc) prepared by emulsion polymerization. Since no data for linear equivalent were available, g and h were not calculated. At lower conversion/MW p= 1.84 was found, only slightly higher than the theoretically expected p = 1.73 for a randomly branched architecture, p slightly decreased with increasing M, indicating... [Pg.209]

Schluter AD (2005) A Covalent Chemistry Approach to Giant Macromolecules with Cylindrical Shape and an Engineerable Interior and Surface. 245 151-191 Schmitt V, Leal-Calderon F, Bibette J (2003) Preparation of Monodisperse Particles and Emulsions by Controlled Shear. 227 195-215... [Pg.266]

For the characterization of Langmuir films, Fulda and coworkers [75-77] used anionic and cationic core-shell particles prepared by emulsifier-free emulsion polymerization. These particles have several advantages over those used in early publications First, the particles do not contain any stabihzer or emulsifier, which is eventually desorbed upon spreading and disturbs the formation of a particle monolayer at the air-water interface. Second, the preparation is a one-step process leading directly to monodisperse particles 0.2-0.5 jim in diameter. Third, the nature of the shell can be easily varied by using different hydrophilic comonomers. In Table 1, the particles and their characteristic properties are hsted. Most of the studies were carried out using anionic particles with polystyrene as core material and polyacrylic acid in the shell. [Pg.218]

The interaction between the dispersed-phase elements at high volume fractions has an impact on breakup and aggregation, which is not well understood. For example, Elemans et al. (1997) found that when closely spaced stationary threads break by the growth of capillary instabilities, the disturbances on adjacent threads are half a wavelength out of phase (Fig. 43), and the rate of growth of the instability is smaller. Such interaction effects may have practical applications, for example, in the formation of monodisperse emulsions (Mason and Bibette, 1996). [Pg.195]

Particle Size Distribution Determination. To consider the full PSD, a population balance or age distribution analysis on particles must be employed. Table II gives a summary of recent work concerning the determination of PSD s in emulsion systems, using both the "monodispersed" approximation and the population balance approach. More details can be found in the literature sources cited in the Table. [Pg.223]

It was apparent that the dense adsorption layer of HPC which was formed on the silica particles at the LCST plays a part in the preparation of new composite polymer latices, i.e. polystyrene latices with silica particles in the core. Figures 10 and 11 show the electron micrographs of the final silica-polystyrene composite which resulted from seeded emulsion polymerization using as seed bare silica particles, and HPC-coated silica particles,respectively. As may be seen from Fig.10, when the bare particles of silica were used in the seeded emulsion polymerization, there was no tendency for encapsulation of silica particles, and indeed new polymer particles were formed in the aqueous phase. On the other hand, encapsulation of the seed particles proceeded preferentially when the HPC-coated silica particles were used as the seed and fairly monodisperse composite latices including silica particles were generated. This indicated that the dense adsorption layer of HPC formed at the LCST plays a role as a binder between the silica surface and the styrene molecules. [Pg.141]

Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308 537-541... [Pg.240]

At present our understanding of emulsion behaviour is not as well developed as that of particulate or polymer systems. Part of the difficulty in correlating the rheology lies in the high level of characterisation required in order to differentiate between systems as well as the greater difficulty in preparing monodisperse model emulsions than rigid particulate systems. However, this is understandable because emulsion characterisation can be formidable. [Pg.284]


See other pages where Emulsions monodispersity is mentioned: [Pg.42]    [Pg.44]    [Pg.42]    [Pg.44]    [Pg.506]    [Pg.513]    [Pg.15]    [Pg.215]    [Pg.218]    [Pg.503]    [Pg.188]    [Pg.220]    [Pg.212]    [Pg.77]    [Pg.280]    [Pg.30]   
See also in sourсe #XX -- [ Pg.17 ]




SEARCH



Emulsion monodisperse

Monodispersed

Monodispersed emulsions

Monodispersivity

© 2024 chempedia.info