Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emulsion stream

In many surface-separation processes, there will occur three distinct phases or process streams a product stream (either oil or water), a waste (tailings) stream, and an interface or rag layer emulsion stream, which may contain emulsified oil and/ or water. The interface emulsion can be the most troublesome, in terms of process operation, and the most complex and intractable, in terms of treatment. Mikula shows (Figure 1 in Ref. [66]) a photomicrograph of a quite stable interface emulsion (rag-layer emulsion) in which one can clearly observe the simultaneous occurrences of both O/W and W/O emulsions in different regions of the same sample. [Pg.278]

Samer [137] studied miniemulsion copolymerization in a single CSTR. Two separate feed streams, miniemulsion (or macroemulsion for comparative studies) and initiator were fed at constant rates into the reactor. SLS was used as the surfactant, HD as the costabilizer, and KPS was the initiator. In the miniemulsion configuration (costabilizer included in recipe), the emulsion stream was continuous. Constant volume was provided by an overflow outlet. Salt tracer experiments were used to validate the ideal mixing model assumed for a CSTR. Total monomer conversion was measured via in-hne densitometry, and copolymer composition via offline NMR. [Pg.203]

The organic and stripping flow rate that constitutes the emulsion stream are related by... [Pg.1035]

FIGURE 39.1 PEHFSD setup continuous line feed stream dotted line emulsion stream. (From Urtiga, A., J. Membr. Sci., 257, 161, 2005. With permission.)... [Pg.1058]

To effectively monitor the separation efficiency of the particular treatment equipment, two specific methods are employed centrifugation (discussed briefly under Testing Procedures ) and the Dean-Stark analysis. The Dean-Stark analysis determines the fractional composition of oil-hydrocarbon, water, and solids of an emulsion stream by using a distillation process. Its results for heavy-oil emulsions are generally more reliable than those obtained by centrifugation however, the results of centrifugation are... [Pg.362]

The major portion of sait is found in residues as these streams serve as the bases for fuels, or as feeds for asphalt and petroleum coke production, the presence of salt in these products causes fouling of burners, the alteration of asphalt emulsions, and the deterioration of coke quality. Furthermore, calcium and magnesium chlorides begin to hydrolyze at 120°C. This hydrolysis occurs rapidly as the temperature increases (Figure 8.1) according to the reaction i. ... [Pg.329]

If oil and water are mixed as an emulsion, dehydration becomes much more difficult. Emulsions can form as oil-in-water or water-in-oil if mixed production streams are subjected to severe turbulence, as might occur in front of perforations in the borehole. Emulsions can be encouraged to break (or destabilise) using chemicals, heat or just gentle agitation. Chemical destabilisation is the most common method and laboratory tests would normally be conducted to determine the most suitable combination of chemicals. [Pg.248]

The second step is to disperse the core material being encapsulated in the solution of shell material. The core material usually is a hydrophobic or water-knmiscible oil, although soHd powders have been encapsulated. A suitable emulsifier is used to aid formation of the dispersion or emulsion. In the case of oil core materials, the oil phase is typically reduced to a drop size of 1—3 p.m. Once a suitable dispersion or emulsion has been prepared, it is sprayed into a heated chamber. The small droplets produced have a high surface area and are rapidly converted by desolvation in the chamber to a fine powder. Residence time in the spray-drying chamber is 30 s or less. Inlet and outlet air temperatures are important process parameters as is relative humidity of the inlet air stream. [Pg.322]

The phenoHc resins used for particle board are NaOH-catalyzed resoles of low viscosity and high water miscibility, similar to the Hquid resole adhesives used in plywood manufacture. The higher resin and caustic content of the board frequently necessitates the addition of hydrophobic agents such as wax emulsions to increase the barrier properties of the board. The adhesive is appHed to the particles in thin streams using high agitation to maximize material usage. Boards are cured in presses for 5—10 min at 150—185°C. [Pg.306]

The aqueous emulsion polymerization can be conducted by a batch, semibatch, or continuous process (Fig. 5). In a simple batch process, all the ingredients are charged to the reactor, the temperature is raised, and the polymerization is mn to completion. In a semibatch process, all ingredients are charged except the monomers. The monomers are then added continuously to maintain a constant pressure. Once the desired soflds level of the latex is reached (typically 20—40% soflds) the monomer stream is halted, excess monomer is recovered and the latex is isolated. In a continuous process (37), feeding of the ingredients and removal of the polymer latex is continuous through a pressure control or rehef valve. [Pg.510]

The centrifugal fuel-cleaning process consists of mixing 5-10% water with the oil plus an emulsion breaker to aid the separation of water and oil. Then a mixer dispenses the wash water into the oil stream to aid the impurities in forming a water solution. The centrifuges then separate this water from the... [Pg.447]

Neat oils and water-based coolants eventually reach the end of their working lives, and then the user is faced with the problem of their correct disposal. Under no circumstances should neat oils and emulsions be discharged into streams or sewers. Some solutions can, however, be fed into the sewage system after further dilution - but only where permitted. [Pg.886]

If the secondary stream contains emulsifier it can function in three ways. When the emulsion feed is started quickly the added emulsifier can serve to lengthen the particle formation period and hence to broaden the particle size distribution. When the emulsion feed is started later and added in such a manner that the emulsifier is promptly adsorbed on existing particles, one can obtain quite narrow size distributions. If the emulsion feed is started later but added rapidly enough to generate free emulsifier in the reaction mixture a second population of particles can be formed, again yielding a broad size distribution. [Pg.8]

Separation of two liquid phases, immiscible or partially miscible liquids, is a common requirement in the process industries. For example, in the unit operation of liquid-liquid extraction the liquid contacting step must be followed by a separation stage (Chapter 11, Section 11.16). It is also frequently necessary to separate small quantities of entrained water from process streams. The simplest form of equipment used to separate liquid phases is the gravity settling tank, the decanter. Various proprietary equipment is also used to promote coalescence and improve separation in difficult systems, or where emulsions are likely to form. Centrifugal separators are also used. [Pg.440]

Method The process used for oily waste stream after emulsion breaking-gravity oil separation. System component Filter modules sized on the basis of hydraulic loading of 1 L/min/m2. [Pg.378]

Emulsions. Emulsion fluids and foams came into routine use in competition with crosslinked fluids during 1970-80. Simple, barely stable emulsions had been used early in fracturing. These were mainly emulsified acids that "broke" when the acid spent on the formation surfaces. In the late 1960 s Kiel became a proponent of very high viscosity oil fluids as a method to place exceptional (at the time) amounts of proppant(337,338). To avoid the frictional resistance typical of gelled oils he advanced the concept of preparing a very viscous oil-external emulsion with one part fresh water, 0.1% sodium tallate surfactant, and two parts oil. The viscous emulsion had to be pumped simultaneously with a water stream to minimize frictional pressure. This process was clumsy and still... [Pg.89]

For a single continuous reactor, the model predicted the expected oscillatory behaviour. The oscillations disappeared when a seeded feed stream was used. Figure 5c shows a single CSTR behaviour when different start-up conditions are applied. The solid line corresponds to the reactor starting up full of water. The expected overshoot, when the reactor starts full of the emulsion recipe, is correctly predicted by the model and furthermore the model numerical predictions (conversion — 25%, diameter - 1500 A) are in a reasonable range. [Pg.229]

Films of polyolefins, polyamides and poly(vinylidene dichloride) are made using this technique. As most of the films are used for flexible packaging, further down-stream surface treatments are usually applied to improve performance. For example, aqueous polymer emulsions, e.g., poly(vinylidene dichloride), or delaminated clay particles improve the barrier properties as will metallising with aluminium vapour. Corona discharge, causing slight surface oxidation, improves printability. [Pg.81]

The emulsion is separated in the centrifugal contactor (POD), which produces a stream containing water-soluble impurities and a stream of washed solvent. [Pg.582]

Mechanical and biological methods are very effective on a large scale, and physical and chemical methods are used to overcome particular difficulties such as final sterilization, odor removal, removal of inorganic and organic chemicals and breaking oil or fat emulsions. Normally, no electrochemical processes are used [10]. On the other hand, there are particular water and effluent treatment problems where electrochemical solutions are advantageous. Indeed, electrochemistry can be a very attractive idea. It is uniquely clean because (1) electrolysis (reduction/oxidation) takes place via an inert electrode and (2) it uses a mass-free reagent so no additional chemicals are added, which would create secondary streams, which would as it is often the case with conventional procedures, need further treatment, cf. Scheme 10. [Pg.185]

Surfactants entering the refinery wastewater streams will increase the amount of emulsions and sludge generated. Surfactants can enter the system from a... [Pg.314]


See other pages where Emulsion stream is mentioned: [Pg.256]    [Pg.256]    [Pg.360]    [Pg.375]    [Pg.5884]    [Pg.256]    [Pg.256]    [Pg.256]    [Pg.360]    [Pg.375]    [Pg.5884]    [Pg.256]    [Pg.247]    [Pg.250]    [Pg.264]    [Pg.404]    [Pg.405]    [Pg.123]    [Pg.83]    [Pg.225]    [Pg.348]    [Pg.591]    [Pg.795]    [Pg.2]    [Pg.33]    [Pg.204]    [Pg.103]    [Pg.283]    [Pg.211]    [Pg.119]    [Pg.301]    [Pg.475]    [Pg.19]   
See also in sourсe #XX -- [ Pg.278 ]




SEARCH



Centrifugal separation process-stream emulsions

Process-stream emulsions

Process-stream emulsions sampling

Process-stream emulsions testing

© 2024 chempedia.info