Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emulsion polymerization chain transfer agents

The newly formed short-chain radical A then quickly reacts with a monomer molecule to create a primary radical. If subsequent initiation is not fast, AX is considered an inhibitor. Many have studied the influence of chain-transfer reactions on emulsion pol5unerization because of the interesting complexities arising from enhanced radical desorption rates from the growing polymer particles (128,129). Chain transfer reactions are not limited to chain transfer agents. Chain transfer to monomer is in many cases the main chain termination event in emulsion polymerization. Chain transfer to polymer leads to branching which can greatly impact final product properties (130). [Pg.4211]

Emulsion Process. The emulsion polymerization process utilizes water as a continuous phase with the reactants suspended as microscopic particles. This low viscosity system allows facile mixing and heat transfer for control purposes. An emulsifier is generally employed to stabilize the water insoluble monomers and other reactants, and to prevent reactor fouling. With SAN the system is composed of water, monomers, chain-transfer agents for molecular weight control, emulsifiers, and initiators. Both batch and semibatch processes are employed. Copolymerization is normally carried out at 60 to 100°C to conversions of - 97%. Lower temperature polymerization can be achieved with redox-initiator systems (51). [Pg.193]

If a linear mbber is used as a feedstock for the mass process (85), the mbber becomes insoluble in the mixture of monomers and SAN polymer which is formed in the reactors, and discrete mbber particles are formed. This is referred to as phase inversion since the continuous phase shifts from mbber to SAN. Grafting of some of the SAN onto the mbber particles occurs as in the emulsion process. Typically, the mass-produced mbber particles are larger (0.5 to 5 llm) than those of emulsion-based ABS (0.1 to 1 llm) and contain much larger internal occlusions of SAN polymer. The reaction recipe can include polymerization initiators, chain-transfer agents, and other additives. Diluents are sometimes used to reduce the viscosity of the monomer and polymer mixture to faciUtate processing at high conversion. The product from the reactor system is devolatilized to remove the unreacted monomers and is then pelletized. Equipment used for devolatilization includes single- and twin-screw extmders, and flash and thin film evaporators. Unreacted monomers are recovered for recycle to the reactors to improve the process yield. [Pg.204]

Aqueous emulsion polymerization is carried out using a fluorinated emulsifier, a chain-transfer agent to control molecular weight, and dispersion stabilizers such as manganic acid salts and ammonium oxalate (13,14). [Pg.365]

Basic Components. The principal components in emulsion polymerization are deionized water, monomer, initiator, emulsifier, buffer, and chain-transfer agent. A typical formula consists of 20—60% monomer, 2—10 wt % emulsifier on monomer, 0.1—1.0 wt % initiator on monomer, 0.1—1.0 wt % chain-transfer agent on monomer, various small amounts of buffers and bacteria control agents, and the balance deionized water. [Pg.24]

A typical recipe for batch emulsion polymerization is shown in Table 13. A reaction time of 7—8 h at 30°C is requited for 95—98% conversion. A latex is produced with an average particle diameter of 100—150 nm. Other modifying ingredients may be present, eg, other colloidal protective agents such as gelatin or carboxymethylcellulose, initiator activators such as redox types, chelates, plasticizers, stabilizers, and chain-transfer agents. [Pg.439]

Buffers are frequently added to emulsion recipes and serve two main purposes. The rate of hydrolysis of vinyl acetate and some comonomers is pH-sensitive. Hydrolysis of monomer produces acetic acid, which can affect the initiator, and acetaldehyde which as a chain-transfer agent may lower the molecular weight of the polymer undesirably. The rates of decomposition of some initiators are affected by pH and the buffer is added to stabilize those rates, since decomposition of the initiator frequently changes the pH in an unbuffered system. Vinyl acetate emulsion polymerization recipes are usually buffered to pH 4—5, eg, with phosphate or acetate, but buffering at neutral pH with bicarbonate also gives excellent results. The pH of most commercially available emulsions is 4—6. [Pg.464]

Often a chain-transfer agent is added to vinyl acetate polymerizations, whether emulsion, suspension, solution, or bulk, to control the polymer molecular weight. Aldehydes, thiols, carbon tetrachloride, etc, have been added. Some emulsion procedures call for the recipe to include a quantity of preformed PVAc emulsion and sometimes antifoamers must be added (see Foams). [Pg.464]

We begin the discussion of EPM by elaborating on this physical picture. Figure 1 shows a typical emulsion CSTR reactor and polymerization recipe. The magnified portion of the latex shows the various phases and the major species involved. The latex consists of monomers, water, surfactant, initiator, chain transfer agent, and added electrolyte. We used the mechanism for particle formation as described in Feeney et al. (8-9) and Hansen and Ugelstad (2). We have not found it necessary to invoke the micellar entry theory 2, 2/ 6./ 11/ 12/ 14. [Pg.361]

Morton and Salatiello have deduced the ratio kpp/kp for radical polymerization of butadiene by applying the above described procedure, appropriately modified for the emulsion system they used. The primary molecular weight was controlled by a mercaptan acting as chain transfer agent, as in the experiments of Bardwell and Winkler cited above. Measurement of the mercaptan concentration over the course of the reaction provided the necessary information for calculating % at any stage of the process, and in particular at the critical conversion 6c for the initial appearance of gel. The velocity constant ratios which they obtained from their results through the use of Eq. [Pg.389]

Polymers may be made by four different experimental techniques bulk, solution, suspension, and emulsion processes. They are somewhat self-explanatory. In bulk polymerization only the monomers and a small amount of catalyst is present. No separation processes are necessary and the only impurity in the final product is monomer. But heat transfer is a problem as the polymer becomes viscous. In solution polymerization the solvent dissipates the heat better, but it must be removed later and care must be used in choosing the proper solvent so it does not act as a chain transfer agent. In suspension polymerization the monomer and catalyst are suspended as droplets in a continuous phase such as water by continuous agitation. Finally, emulsion polymerization uses an emulsifying agent such as soap, which forms micelles where the polymerization takes place. [Pg.264]

A common chain transfer agent is dodecylmercaptan (14). Further, dimeric a-methylstyrene and terpinolene have been claimed to be useful transfer agents (16). Initiators for emulsion polymerization are shown in Table 8.6. [Pg.219]

Chain-transfer agents -m emulsion polymerization [LATEX TECITNOLOGY] (Vol 15) -for fluorocarbon elastomers [ELASTOMERS, SYNTHETIC - FLUOROCARBONELASTOMERS] (Vol 8)... [Pg.188]

Polymerization of emulsion SBR is started by free radicals generated by the redox system in cold SBR and by persulfate or other initiator in hot SBR. The initiators are not involved in the molecular structure of the polymers. Almost all molecules are terminated by fragments of the chain transfer agent (a mercaptan). Schematically, the molecules are RSM H. where RS is the C H S pan of a dodccyl mercaptan molecule M is the monomer involved n is the degree of polymerization, and H is a hydrogen atom formerly attached to the sulfur of a mercaptan. In the case of free-radical-initiated polymerization of butadiene, by itself to form homopolymers or with other monomers for fonn copolymers, the butadiene will be about 18% 16% fix-1.4 and 66% trms-1,4-... [Pg.540]

Formulas for emulsion polymerization also include buffers, free radical initiators, such as potassium persulfate (KiSiOs), chain transfer agents, such as dodecyl mercaptan (G sSTT). The system is agitated continuously at temperatures below 100°C until polymerization is essentially complete or is terminated by the addition of compounds such as dimethyl dithiocarbamate to prevent the formation of undesirable products such as cross-linked polymers. Stabilizers such as phenyl Beta-naphthylamine are added to latices of elastomers. [Pg.1342]

Derivatives of acyclic olefins can be used as chain transfer agents in these polymerizations. The most effective are those with a terminal double bond. For example, in the ROMP of 248 catalysed by [Ru(H20)6](0Ts)2 the transfer constant (klr/kp) for CH2=CHCH2CH20H is 0.21. The size of the polymer particles produced by emulsion polymerization of 248, using RUCI3 with a non-ionic surfactant, is of the order of 0.03 /zm577. [Pg.1581]

The experimental results on the polymer produced in emulsion polymerizations published thus far are both confusing and contradictory. Several factors may be responsible for this first, many surfactants behave as chain transfer agents, which has often not been recognized second, measurements have often been made on samples that contain polymer from Intervals I, II and III, which leads to a significant increase in the polydispersity index becauseis sensitive to the presence of lower molecular weight species tRird, direct measurements of the MWD have only recently become possible with the advent of gel permeation chromatography. [Pg.120]

Emulsion polymerization requires the use of free radical initiators, fluorinated surfactants, and often chain transfer agents. The polymer isolated from the reaction vessel consists of agglomerated spherical particles ranging in diameter from 0.2 to 0.5 jm.56 It is then dried and supplied as a free-flowing powder or as pellets, depending on the intended use. If very pure PVDF is required, the polymer is rinsed before the final drying to eliminate any impurities such as residual initiator and surfactants.57... [Pg.23]

Uzulina et al. have found that polymerization of styrene in bulk and emulsion can be better controlled by generating in situ a chain transfer agent produced by using a large excess of azo initiator to the S-thiobenzoyl-thioglycolic acid. The resulting amide is not isolated but added directly to the other components of the polymerization recipe [11]. [Pg.212]

A method for the controlled emulsion polymerization of chloroprene using dithiocarbamic esters as sulfur-based chain transfer agents is described. The method provides industrially relevant molar masses with Mn s> 50,000 daltons with good yields in acceptable times. It was further determined that when pKa values for the dithiocarbamic acid precursors were less than 12, the thioester was ineffective as a regulator. [Pg.492]

Emulsion polymerization with the chain transfer agent l-benzyl-2,5-cyclohexadiene-1-carboxylic acid was also used to prepare poly(ethyl acrylate-co-methacrylic acid). Poly(N-vinylpyrrolidone) was prepared using the chain transfer agent l-i-propyl-2,5-cyclohexadiene-1 -carboxylic acid. [Pg.578]

Using the RAFT chain transfer agent dibenzyltrithiocarbonate with oleic acid, tripotassium phosphate, potassium hydroxide, and potassium persulfate, Parker [3] prepared polystyrene by emulsion polymerization. The polystyrene latex was obtained in roughly 90 minutes and had a sohd content of 20.6%, while purified polystyrene had a M of 54,000 daltons with a PDI of 1.17. [Pg.590]

The controlled emulsion polymerization of styrene using nitroxide-mediated polymerization (NMP), reversible addition-fragmentation transfer polymerization (RAFT), stable free radical polymerization (SFR), and atom transfer radical polymerization (ATRP) methods is described. The chain transfer agent associated with each process was phenyl-t-butylnitrone, nitric oxide, dibenzyl trithiocarbonate, 1,1-diphenylethylene, and ethyl 2-bromo-isobutyrate, respectively. Polydispersities between 1.17 and 1.80 were observed. [Pg.595]

TABLE 3. Selected emulsion surfactant pairs used in the controlled RAFT polymerization of styrene monomer with dihenzyltrithiocarhonate as the chain transfer agent. [Pg.598]


See other pages where Emulsion polymerization chain transfer agents is mentioned: [Pg.186]    [Pg.142]    [Pg.76]    [Pg.278]    [Pg.278]    [Pg.386]    [Pg.510]    [Pg.586]    [Pg.589]    [Pg.250]    [Pg.351]    [Pg.365]    [Pg.219]    [Pg.1105]    [Pg.109]    [Pg.356]    [Pg.26]    [Pg.206]    [Pg.715]    [Pg.579]    [Pg.598]   
See also in sourсe #XX -- [ Pg.296 ]

See also in sourсe #XX -- [ Pg.296 ]




SEARCH



Agents, polymeric

Chain transfer agent emulsion)

Chain transfer agents

Chain transfer emulsion polymerization

Chain transfer polymerization agents

Emulsion polymerization

Emulsions, polymeric

Polymerization agents

Polymerization emulsion polymerizations

Transfer agents

© 2024 chempedia.info