Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emissions feedstock

The need to meet environmental regulations can affect processing costs. Undesirable air emissions may have to be eliminated and Hquid effluents and soHd residues treated and disposed of by incineration or/and landfilling. It is possible for biomass conversion processes that utilize waste feedstocks to combine waste disposal and treatment with energy and/or biofuel production so that credits can be taken for negative feedstock costs and tipping or receiving fees. [Pg.16]

Sulfur can be produced direcdy via Frasch mining or conventional mining methods, or it can be recovered as a by-product from sulfur removal and recovery processes. Production of recovered sulfur has become more significant as increasingly sour feedstocks are utilized and environmental regulations concerning emissions and waste streams have continued to tighten worldwide. Whereas recovered sulfur represented only 5% of the total sulfur production ia 1950, as of 1996 recovered sulfur represented approximately two-thirds of total sulfur production (1). Recovered sulfur could completely replace native sulfur production ia the twenty-first century (2). [Pg.209]

Ammonia Plant 1. Where possible, use natural gas as the feedstock for the ammonia plant, to minimize air emissions. 2. Use hot process gas from the secondary reformer to heat the primary reformer tubes (the exchanger-reformer concept), thus reducing the need for natural gas. [Pg.67]

These observations consummated in a growth model that confers on the millions of aligned zone 1 nanotubes the role of field emitters, a role they play so effectively that they are the dominant source of electron injection into the plasma. In response, the plasma structure, in which current flow becomes concentrated above zone 1, enhances and sustains the growth of the field emission source —that is, zone 1 nanotubes. A convection cell is set up in order to allow the inert helium gas, which is swept down by collisions with carbon ions toward zone 1, to return to the plasma. The helium flow carries unreacted carbon feedstock out of zone 1, where it can add to the growing zone 2 nanotubes. In the model, it is the size and spacing of these convection cells in the plasma that determine the spacing of the zone 1 columns in a hexagonal lattice. [Pg.12]

Ethene and propene are produced as bulk feedstocks for the chemical (polymer) industry and therefore their purities are important parameters. In particular, H2S and COS are compounds which may not only cause corrosion problems in processing equipment, but also may have detrimental effects on the catalysts in use. Eurthermore, air pollution regulations issued by, among others, the US Environmental Protection Agency (EPA) require that most of the sulfur gases should be removed in order to minimize Sulfur emissions into the atmosphere. Therefore, these compounds have to be determined to the ppb level. [Pg.381]

Use of some biomass feedstocks can increase potential environmental risks. Municipal solid waste can contain toxic materials that can produce dioxins and other poisons in the flue gas, and these should not be burned without special emission controls. Demolition wood can contain lead from paint, other heavy metals, creosote, and halides used in presen a-tive treatments. Sewage sludge has a high amount of sulfur, and sulfur dioxide emission can increase if sewage sludge is used as a feedstock. [Pg.159]

Desulfurization of FCC feedstocks reduces the sulfur content of FCC products and SOX emissions. In the United States, road diesel sulfur can be 500 ppm (0.05 wt%). In some European countries, for example in Sweden, the sulfur of road diesel is 50 ppm or less. In California, the gasoline sulfur is required to be less than 40 ppm. The EPA s complex model uses sulfur as a controlling parameter to reduce toxic emissions. With hydroprocessed FCC feeds, about 5% of feed sulfur is in the FCC gasoline. For non-hydroprocessed feeds, the FCC gasoline sulfur is typically 10% of the feed sulfur. [Pg.81]

Higher-value chemical and oxygenate feedstocks in the C,/Cj fraction. Isobutylene and isoamylene are used for the production of methyl tertiary butyl ether (MTBE) and tertiary amyl methyl ether (TAME). MTBE and TAME can be blended into the gasoline to reduce auto emissions. [Pg.134]


See other pages where Emissions feedstock is mentioned: [Pg.76]    [Pg.241]    [Pg.46]    [Pg.428]    [Pg.481]    [Pg.527]    [Pg.353]    [Pg.237]    [Pg.74]    [Pg.422]    [Pg.214]    [Pg.85]    [Pg.90]    [Pg.93]    [Pg.105]    [Pg.107]    [Pg.108]    [Pg.111]    [Pg.130]    [Pg.350]    [Pg.58]    [Pg.159]    [Pg.795]    [Pg.347]    [Pg.104]    [Pg.66]    [Pg.1045]    [Pg.145]    [Pg.149]    [Pg.169]    [Pg.17]    [Pg.205]    [Pg.48]    [Pg.950]    [Pg.291]    [Pg.10]    [Pg.257]    [Pg.361]    [Pg.405]    [Pg.35]    [Pg.49]    [Pg.59]    [Pg.95]   
See also in sourсe #XX -- [ Pg.499 , Pg.500 , Pg.501 , Pg.502 ]




SEARCH



Feedstock and Carbon Emissions

© 2024 chempedia.info