Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emission line widths

It has been shown by various groups that films and solutions of conjugated semiconductors show a strong decrease in PL emission line width (see Fie. 9-29) lor... [Pg.476]

The system provides a resolution of approximately 0.02 nm, comparable with emission line width. [Pg.777]

A major breakthrough came in Australia when Alan Walsh1,2 realized that light sources were available for many elements which emitted atomic spectral lines at the same wavelengths as those at which absorption occurred. By selecting appropriate sources, the emission line widths could be even narrower than the absorption line widths (Figure 2). Thus the sensitivity problem was solved more or less at a stroke, and the modern flame atomic absorption spectrometer was bom. [Pg.6]

The ability of atomic absorption to distinguish between elements and avoid spectral interferences does not depend on the monochromator. It depends instead on the emission line width of the hollow cathode lamp (typically 0.02A.), and the absorption line width of the element in the flame (typically 0.04A.). These values are far superior to the resolution capabilities of commonly available monochromators. Therefore, the monochromator does not enter directly into the ability of the atomic absorption instrument to give a specific result. See Figure 1.)... [Pg.217]

It is important in AA measurements that the emission line width coming from the radiation source is narrower than the absorption line width of the atoms studied. In principle, a high resolution monochromator is not needed to separate the analyte line from the other lines of the spectrum, but in practice, the spectral bandpass of the source should be equal or less than the absorption line width. Otherwise, artificially low absorbance values are obtained leading to reductions in sensitivity. In the AA technique the use of continuum sources (quartz-halogen filament lamps and deuterium and xenon arc lamps) with reasonably priced monochromators is not satisfactory. This is demonstrated in Figure 17. In the case of (A) the emission of radiation is continuous for the whole spectral bandwidth. The energy absorbed by the atoms of the analyte is small in comparison to the whole... [Pg.34]

To summarize, the XRM continuum sensitivity during a typical 4-day orbit will be lxlO phcm s keV, while the line sensitivity at 50 keV, for a narrow line emission (line-width AE = 2 keV), will be 2 X 10 phcm s. ... [Pg.282]

In many instrumental analysis methods the instrument response is proportional to the analyte concentration over substantial concentration ranges. The simplified calculations that result encourage analysts to take significant experimental precautions to achieve such linearity. Examples of such precautions include the control of the emission line width of a hollow-cathode lamp in atomic absorption spectrometry, and the size and positioning of the sample cell to minimize inner filter artefacts in molecular fluorescence spectrometry. However, many analytical methods (e.g. immunoassays and similar competitive binding assays) produce calibration plots that are intrinsically curved. Particularly common is the situation where the calibration plot is linear (or approximately so) at low analyte concentrations, but becomes curved at higher analyte levels. When curved calibration plots are obtained we still need answers to the questions listed in Section 5.2, but those questions will pose rather more formidable statistical problems than occur in linear calibration experiments. [Pg.138]

FIGURE 12 Influence of line shape on calibration parameters for atomic absorption spectrometry. (A) Comparison of atomic line widths for a hollow cathode lamp versus the atomic absorption line width observed in atmospheric pressure atom cells. (B) The slope and linear dynamic range of the calibration changes from I to N as the emission line width of the hollow cathode lamp becomes broader. [Pg.55]

The emission spectrum from a hollow cathode lamp includes, besides emission lines for the analyte, additional emission lines for impurities present in the metallic cathode and the filler gas. These additional lines serve as a potential source of stray radiation that may lead to an instrumental deviation from Beer s law. Normally the monochromator s slit width is set as wide as possible, improving the throughput of radiation, while being narrow enough to eliminate this source of stray radiation. [Pg.418]

Until the advent of lasers the most intense monochromatic sources available were atomic emission sources from which an intense, discrete line in the visible or near-ultraviolet region was isolated by optical filtering if necessary. The most often used source of this kind was the mercury discharge lamp operating at the vapour pressure of mercury. Three of the most intense lines are at 253.7 nm (near-ultraviolet), 404.7 nm and 435.7 nm (both in the visible region). Although the line width is typically small the narrowest has a width of about 0.2 cm, which places a limit on the resolution which can be achieved. [Pg.122]

Lasers (see Chapter 9) are sources of intense, monochromatic radiation which are ideal for Raman spectroscopy and have entirely replaced atomic emission sources. They are more convenient to use, have higher intensity and are more highly monochromatic for example, the line width at half-intensity of 632.8 nm (red) radiation from a helium-neon laser can be less than 0.05 cm. ... [Pg.122]

Ultraviolet light sources are based on the mercury vapor arc. The mercury is enclosed ia a quart2 tube and a potential is appHed to electrodes at either end of the tube. The electrodes can be of iron, tungsten, or other metals and the pressure ia a mercury vapor lamp may range from less than 0.1 to >1 MPa (<1 to >10 atm). As the mercury pressure and lamp operating temperatures are iacreased, the radiation becomes more iatense and the width of the emission lines iacreases (17). [Pg.423]

In principle all the X-ray emission methods can give chemical state information from small shifts and line shape changes (cf, XPS and AES in Chapter 5). Though done for molecular studies to derive electronic structure information, this type of work is rarely done for materials analysis. The reasons are the instrumental resolution of commercial systems is not adequate and the emission lines routinely used for elemental analysis are often not those most useftil for chemical shift meas-ure-ments. The latter generally involve shallower levels (narrower natural line widths), meaning longer wavelength (softer) X-ray emission. [Pg.337]

It would appear that measurement of the integrated absorption coefficient should furnish an ideal method of quantitative analysis. In practice, however, the absolute measurement of the absorption coefficients of atomic spectral lines is extremely difficult. The natural line width of an atomic spectral line is about 10 5 nm, but owing to the influence of Doppler and pressure effects, the line is broadened to about 0.002 nm at flame temperatures of2000-3000 K. To measure the absorption coefficient of a line thus broadened would require a spectrometer with a resolving power of 500000. This difficulty was overcome by Walsh,41 who used a source of sharp emission lines with a much smaller half width than the absorption line, and the radiation frequency of which is centred on the absorption frequency. In this way, the absorption coefficient at the centre of the line, Kmax, may be measured. If the profile of the absorption line is assumed to be due only to Doppler broadening, then there is a relationship between Kmax and N0. Thus the only requirement of the spectrometer is that it shall be capable of isolating the required resonance line from all other lines emitted by the source. [Pg.782]

Fig. 2.2 Intensity distribution /( ) for the emission of y-rays with mean transition energy Eq. The Heisenberg natural line width of the distribution, F = S/t, is determined by the mean lifetime T of the excited state (e)... Fig. 2.2 Intensity distribution /( ) for the emission of y-rays with mean transition energy Eq. The Heisenberg natural line width of the distribution, F = S/t, is determined by the mean lifetime T of the excited state (e)...
The emission line is centered at the mean energy Eq of the transition (Fig. 2.2). One can immediately see that I E) = 1/2 I Eq) for E = Eq E/2, which renders r the full width of the spectral line at half maximum. F is called the natural width of the nuclear excited state. The emission line is normalized so that the integral is one f l(E)dE = 1. The probability distribution for the corresponding absorption process, the absorption line, has the same shape as the emission line for reasons of time-reversal invariance. [Pg.10]

In the following, we consider the shape and the width of the Mdssbauer velocity spectrum in more detail. We assume that the source is moving with velocity u, and the emission line is an unsplit Lorentzian according to (2.2) with natural width E. If we denote the total number of y-quanta emitted by the source per time unit toward the detector by Nq, the number N E)AE of recoU-free emitted y-rays with energy y in the range to -f dE is given by ([1] in Chap. 1)... [Pg.18]

In a Mdssbauer transmission experiment, the absorber containing the stable Mdssbauer isotope is placed between the source and the detector (cf. Fig. 2.6). For the absorber, we assume the same mean energy q between nuclear excited and ground states as for the source, but with an additional intrinsic shift A due to chemical influence. The absorption Une, or resonant absorption cross-section cr( ), has the same Lorentzian shape as the emission line and if we assume also the same half width , cr( ) can be expressed as ([1] in Chap. 1)... [Pg.18]

The experimental line width is 2F because an emission line of the same width scans the absorption line see Fig. 2.6. [Pg.22]

Fig. 2.8 (a) Fractional absorption of a Mossbauer absorption line as function of the effective absorber thickness t. (b) The depth of the spectrum is determined by fs. The width for thin absorbers, t 1, is twice the natural line width F of the separate emission and absorption lines (see (2.30)). AE is the shift of the absorption line relative to the emission line due to chemical influence... [Pg.23]

Fig. 3.6 (a) Decay scheme of and (b) ideal emission spectrum of Co diffused into rhodium metal. The nuclear levels in (a) are labeled with spin quantum numbers and lifetime. The dashed arrow up indicates the generation of Co by the reaction of Mn with accelerated deuterons (d in Y out). Line widths in (b) are arbitrarily set to be equal. The relative line intensities in (%) are given with respect to the 122-keV y-line. The weak line at 22 keV, marked with ( ), is an X-ray fluorescence line from rhodium and is specific for the actual source matrix... [Pg.34]

The emission spectmm of Co, as recorded with an ideal detector with energy-independent efficiency and constant resolution (line width), is shown in Fig. 3.6b. In addition to the expected three y-lines of Fe at 14.4, 122, and 136 keV, there is also a strong X-ray line at 6.4 keV. This is due to an after-effect of K-capture, arising from electron-hole recombination in the K-shell of the atom. The spontaneous transition of an L-electron filling up the hole in the K-shell yields Fe-X X-radiation. However, in a practical Mossbauer experiment, this and other soft X-rays rarely reach the y-detector because of the strong mass absorption in the Mossbauer sample. On the other hand, the sample itself may also emit substantial X-ray fluorescence (XRF) radiation, resulting from photo absorption of y-rays (not shown here). Another X-ray line is expected to appear in the y-spectrum due to XRF of the carrier material of the source. For rhodium metal, which is commonly used as the source matrix for Co, the corresponding line is found at 22 keV. [Pg.35]

Abstract Sonoluminescence from alkali-metal salt solutions reveals excited state alkali - metal atom emission which exhibits asymmetrically-broadened lines. The location of the emission site is of interest as well as how nonvolatile ions are reduced and electronically excited. This chapter reviews sonoluminescence studies on alkali-metal atom emission in various environments. We focus on the emission mechanism does the emission occur in the gas phase within bubbles or in heated fluid at the bubble/liquid interface Many studies support the gas phase origin. The transfer of nonvolatile ions into bubbles is suggested to occur by means of liquid droplets, which are injected into bubbles during nonspherical bubble oscillation, bubble coalescence and/or bubble fragmentation. The line width of the alkali-metal atom emission may provide the relative density of gas at bubble collapse under the assumption of the gas phase origin. [Pg.337]


See other pages where Emission line widths is mentioned: [Pg.175]    [Pg.177]    [Pg.256]    [Pg.726]    [Pg.17]    [Pg.24]    [Pg.210]    [Pg.524]    [Pg.175]    [Pg.177]    [Pg.256]    [Pg.726]    [Pg.17]    [Pg.24]    [Pg.210]    [Pg.524]    [Pg.416]    [Pg.437]    [Pg.376]    [Pg.225]    [Pg.237]    [Pg.163]    [Pg.487]    [Pg.215]    [Pg.2]    [Pg.9]    [Pg.10]    [Pg.14]    [Pg.237]    [Pg.313]    [Pg.322]    [Pg.340]    [Pg.342]    [Pg.343]   
See also in sourсe #XX -- [ Pg.63 ]




SEARCH



Line width

© 2024 chempedia.info