Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elements optical properties

Wavefunctions and Charge Distributions. Though the quality of the wavefunction obtained in a crystal orbital study cannot be assessed by direct comparison with experiment it is of decisive importance from the point of view of prospective transport calculations on conducting polymers (calculation of electron-phonon interaction matrix elements, optical properties, etc.). Of course, the wavefunction also plays a fundamental role when properties related to the many-electron energy are calculated, and therefore the quality of these quantities partially characterizes that of the wavefunction. [Pg.72]

See K. Fajans, Radio Elements and Isotopes. Chemical Forces and Optical Properties of Substances, McGraw-Hill, New York, 1931. [Pg.427]

Black smoke (BS) is a particulate measure that typically contains at least 50% respirable particulates smaller than 4.5 mm in aerodynamic diameter, sampled by the British smokeshade (BS) method. The reflectance of light is measured by the darkness of the stain caused by particulates on a white filter paper. The result of BS sampling depends on the density of the stain and the optical properties of the particulates. Because the method is based on reflectance from elemental carbon, its use is recommended in areas where coal smoke from domestic fires is the dominant component of ambient particulates. [Pg.16]

The III-V and II-VI compounds refer to combination of elements that have two, three, five, or six valence electrons. They have semiconductor properties and are all produced by CVD either experimentally or in production. The CVD of these materials is reviewed in Ch. 12. Many of their applications are found in optoelectronics where they are used instead of silicon, since they have excellent optical properties (see Ch. 15). Generally silicon is not a satisfactory optical material, since it emits and absorbs radiation mostly in the range of heat instead of light. [Pg.356]

The synthesis of bimetallic nanoparticles is mainly divided into two methods, i.e., chemical and physical method, or bottom-up and top-down method. The chemical method involves (1) simultaneous or co-reduction, (2) successive or two-stepped reduction of two kinds of metal ions, and (3) self-organization of bimetallic nanoparticle by physically mixing two kinds of already-prepared monometallic nanoparticles with or without after-treatments. Bimetallic nanoparticle alloys are prepared usually by the simultaneous reduction while bimetallic nanoparticles with core/shell structures are prepared usually by the successive reduction. In the preparation of bimetallic nanoparticles, one of the most interesting aspects is a core/shell structure. The surface element plays an important role in the functions of metal nanoparticles like catal5dic and optical properties, but these properties can be tuned by addition of the second element which may be located on the surface or in the center of the particles adjacent to the surface element. So, we would like to use following marks to inscribe the bimetallic nanoparticles composed of metal 1, Mi and metal 2, M2. [Pg.50]

Synthesis of novel materials with desired and tunable physical and chemical properties continues to draw wide interest. Nanomaterials with a variety of shapes and sizes have been synthesized as they offer numerous possibilities to study size and shape-dependent variations of electronic, optical, and chemical properties. Nanomaterials of a particular element show drastic differences in physical and chemical properties when compared with the bulk state. For example, bulk gold, a metal that is insoluble in water can be made dispersible when it is in the nanoparticle form. There are drastic changes in the optical properties as well. Bulk gold appears yellow in color, but when it is in the nanoparticle form with an average core diameter of 16 nm, it appears wine red. Likewise, the chemistry of gold, such as catalysis, also shows a drastic change when the constituent units are in the nanometer range. [Pg.334]

Nonlinear optical organic materials such as porphyrins, dyes, and phthalocyanines provide optical limiting properties for photonic devices to control light frequency and intensity in a predictable manner. The optical limit of CNTs composites is saturated at CNTs exceeding 3.8wt% relative to the polymer mass (Chen et al., 2002). Polymer/ CNT composites could also be used to protect human eyes, for example, optical elements, optical sensors, and optical switching (Cao et al., 2002). [Pg.200]

Experiments using the DCC approach aimed at the discovery of improved phosphor materials have also been described. [9] In this case, samples are evaluated optically, an approach well suited to direct comparisons of large numbers of samples, although it is somewhat difficult to compare the results to the optical properties of bulk materials. Further spectroscopic evaluations of individual elements of the sample array are also easily accomplished by a variety of approaches including scanning fiber techniques. One concern in studies of phosphors is the sensitivity of the optical behavior including fluorescence intensity to processing effects such as details of the microstructure or surface preparation. [Pg.155]

The empirical approach [7] was by far the most fruitful first attempt. The idea was to fit a few Fourier coefficients or form factors of the potential. This approach assumed that the pseudopotential could be represented accurately with around three Fourier form factors for each element and that the potential contained both the electron-core and electron-electron interactions. The form factors were generally fit to optical properties. This approach, called the Empirical Pseudopotential Method (EPM), gave [7] extremely accurate energy band structures and wave functions, and applications were made to a large number of solids, especially semiconductors. [8] In fact, it is probably fair to say that the electronic band structure problem and optical properties in the visible and UV for the standard semiconductors was solved in the 1960s and 1970s by the EPM. Before the EPM, even the electronic structure of Si, which was and is the prototype semiconductor, was only partially known. [Pg.251]

Optical examination of etched polished surfaces or small particles can often identify compounds or different minerals hy shape, color, optical properties, and the response to various etching attempts. A semi-quantitative elemental analysis can he used for elements with atomic number greater than four by SEM equipped with X-ray fluorescence and various electron detectors. The electron probe microanalyzer and Auer microprobe also provide elemental analysis of small areas. The secondary ion mass spectroscope, laser microprobe mass analyzer, and Raman microprobe analyzer can identify elements, compounds, and molecules. Electron diffraction patterns can be obtained with the TEM to determine which crystalline compounds are present. Ferrography is used for the identification of wear particles in lubricating oils. [Pg.169]

If the mesogens are pendant to the polymer backbone, materials are obtained with special magnetic, electrical and optical properties. They provide for nonlinear optics (NLOs) applications in numerous optoelectronic elements. [Pg.31]

Optical Properties. Tlie optical properties of the rare earth elements are of great importance in their application. [Pg.13]

In general, hcwever, one can say that vhere the optical properties, the chemical properties and the magnetic properties are used, substitution is not to be feared, vhile in the use of metallurgical and nuclear properties there is always the danger that a more economic solution of the problem can squeeze out the rare earth elements. [Pg.17]


See other pages where Elements optical properties is mentioned: [Pg.2204]    [Pg.3027]    [Pg.309]    [Pg.18]    [Pg.394]    [Pg.463]    [Pg.5]    [Pg.51]    [Pg.366]    [Pg.370]    [Pg.587]    [Pg.70]    [Pg.1210]    [Pg.213]    [Pg.6]    [Pg.321]    [Pg.64]    [Pg.14]    [Pg.338]    [Pg.636]    [Pg.60]    [Pg.217]    [Pg.357]    [Pg.891]    [Pg.235]    [Pg.128]    [Pg.598]    [Pg.108]    [Pg.206]    [Pg.249]    [Pg.244]    [Pg.248]    [Pg.248]    [Pg.320]    [Pg.283]    [Pg.5]    [Pg.119]    [Pg.14]   
See also in sourсe #XX -- [ Pg.48 ]

See also in sourсe #XX -- [ Pg.48 ]




SEARCH



Elements properties

© 2024 chempedia.info