Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elemental Boron and Metal Borides

The discovery of boron deltahedra in elemental boron and metal borides and later in polyhedral boranes generated an interest in computational studies on these structures as soon as suitable computational methods became available. The earliest computational work on boron deltahedra was the 1954 study by Longuet-Higgins and Roberts on the Be octahedra found in metal boride studies using the secular determinants obtained from linear combinations of atomic orbitals (LCAO). This work was followed shortly by a study of boron icosahedra which predicted the existence of a stable anionic icosahedral... [Pg.15]

Figure 6.1 The icosahedron and some of its symmetry elements, (a) An icosahedron has 12 vertices and 20 triangular faces defined by 30 edges, (b) The preferred pentagonal pyramidal coordination polyhedron for 6-coordinate boron in icosahedral structures as it is not possible to generate an infinite three-dimensional lattice on the basis of fivefold symmetry, various distortions, translations and voids occur in the actual crystal structures, (c) The distortion angle 0, which varies from 0° to 25°, for various boron atoms in crystalline boron and metal borides. Figure 6.1 The icosahedron and some of its symmetry elements, (a) An icosahedron has 12 vertices and 20 triangular faces defined by 30 edges, (b) The preferred pentagonal pyramidal coordination polyhedron for 6-coordinate boron in icosahedral structures as it is not possible to generate an infinite three-dimensional lattice on the basis of fivefold symmetry, various distortions, translations and voids occur in the actual crystal structures, (c) The distortion angle 0, which varies from 0° to 25°, for various boron atoms in crystalline boron and metal borides.
We have already pointed out that the most stable forms of the solid state bonding of elemental boron and metals differ in an essential aspect. Hence, in the solidification of a melt containing a random mixture of metal and boron atoms the observed structure will be determined by a balance between the tendencies for boron to form a covalently bound network and the metal to form a close-packed lattice. Among other things, this competition will depend on relative metal and boron concentrations and one expects in proceeding from the metal-rich to the boron-rich borides that the B-B bonded network will become more extensive and dominant. [Pg.216]

Reaction between elemental boron and metal powder is the simplest route to produce boride powder. It can have excellent control on the stoichiometry of the resultant boride. Although this route results in pure ZrB /HfB but cannot be employed for industrial production because the starting materials used are expensive. This route can be exploited to get dense shapes of borides by hot pressing or spark plasma sintering of mixed powder (metal and boron), if the reaction with die is avoided (Tamburini et al., 2008). To avoid any reaction with the die, the graphite die is coated with boron nitride. [Pg.183]

Elemental boron is a refractory material that is usually isolated either as a shiny black crystalline solid or a softer, browner, more impure amorphous solid. Reduction of readily available boron compounds containing boron oxygen bonds to elemental boron is energy intensive and costly. This has limited the extent of conunercial use of this material. Many related refractory boron compounds have been prepared and characterized including metal borides, boron carbides, boron nitrides, and various boron metal alloys. These refractory materials and elemental boron are also discussed in some detail in the article Borides Solid-state Chemistry. Other general references are available on elemental boron and other refractory boron compounds. " ... [Pg.419]

More than one boride phase can be formed with most metals, and in many cases a continuous series of solid solutions may be formed. Several methods have been used for the relatively large-scale preparation of metal borides. One that is commonly used is carbon reduction of boric oxide and the appropriate metal oxide at temperatures up to 2000 °C. Fused salt electrolysis of borax or boric oxide and a metal oxide at 700 1000 °C have also been used. Small-scale methods available include direct reaction of the elements at temperatures above 1000 °C and the reaction of elemental boron with metal oxides at temperatures approaching 2000 °C. One commercial use of borides is in titanium boride-aluminum nitride crucibles or boats for evaporation of aluminum by resistance heating in the aluminizing process, and for rare earth hexaborides as electronic cathodes. Borides have also been used in sliding electrical contacts and as cathodes in HaU cells for aluminum processing. [Pg.420]

Electronic Structure of Elemental Boron and Boron-Rich Metal Borides 139 5.9... [Pg.139]

The propensity of boron to form polyhedral structures is reflected also in the structures of elemental boron and boron-rich metal borides. In hydrocarbon chemistry, benzene is characterized by its extra stability the thermodynamically most stable allotrope of carbon, namely, graphite is formed by the condensation of benzene units. This beautiful relationship between compounds and allotropes exists in boron chemistry as well, where the stable allotropes of elemental boron and many of the boron-rich metal borides are made up of icosahedral subunits. [Pg.139]

Other electropositive elements have been used (e.g. Li, Na, K, Be, Ca, Al, Fe), but the product is generally amorphous and contaminated with refractory impurities such as metal borides. Massive crystalline boron (96%) has been prepared by reacting BCI3 with zinc in a flow system at 900°C. [Pg.140]

Boron is unique among the elements in the structural complexity of its allotropic modifications this reflects the variety of ways in which boron seeks to solve the problem of having fewer electrons than atomic orbitals available for bonding. Elements in this situation usually adopt metallic bonding, but the small size and high ionization energies of B (p. 222) result in covalent rather than metallic bonding. The structural unit which dominates the various allotropes of B is the B 2 icosahedron (Fig. 6.1), and this also occurs in several metal boride structures and in certain boron hydride derivatives. Because of the fivefold rotation symmetry at the individual B atoms, the B)2 icosahedra pack rather inefficiently and there... [Pg.141]

Although boron forms borides with many elements, only the borides of the transition metals have been investigated extensively for their CVD characteristics. Boron forms stable borides with the transition metals, and the most refractory of these and those with the greatest potential interest are the borides of the elements of Groups IVa (Ti, Zr, Hf), Va (V, Nb, Ta) and, to a lesser degree. Via (Cr, Mo, W) (see Table... [Pg.323]


See other pages where Elemental Boron and Metal Borides is mentioned: [Pg.368]    [Pg.386]    [Pg.387]    [Pg.3]    [Pg.368]    [Pg.386]    [Pg.387]    [Pg.3]    [Pg.433]    [Pg.203]    [Pg.4003]    [Pg.227]    [Pg.4002]    [Pg.863]    [Pg.12]    [Pg.32]    [Pg.157]    [Pg.146]    [Pg.129]    [Pg.2]    [Pg.157]    [Pg.486]    [Pg.689]    [Pg.331]    [Pg.49]    [Pg.3]    [Pg.598]    [Pg.253]    [Pg.37]    [Pg.90]    [Pg.108]    [Pg.166]    [Pg.448]    [Pg.474]    [Pg.467]   


SEARCH



Borides

Boron and Borides

Boron borides

Boron elemental

Boron metal borides

Boron metals

Elemental metallic

Elements metals

Elements, metallic

Metal borides

Metalation-boronation

Metallic elements metals

Metals elemental

© 2024 chempedia.info