Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Boron metal borides

Boron forms B—N compounds that are isoelectronic with graphite (see Boron compounds, refractoryboron compounds). The small size also has a significant role in the interstitial alloy-type metal borides boron forms. Boron forms borides with metals that are less electronegative than itself including titanium, zirconium, and hafnium. [Pg.183]

Boric oxide is used as a catalyst ia many organic reactions. It also serves as an iatermediate ia the production of boron haUdes, esters, carbide, nitride, and metallic borides. [Pg.191]

Borides are inert toward nonoxidizing acids however, a few, such as Be2B and MgB2, react with aqueous acids to form boron hydrides. Most borides dissolve in oxidizing acids such as nitric or hot sulfuric acid and they ate also readily attacked by hot alkaline salt melts or fused alkaU peroxides, forming the mote stable borates. In dry air, where a protective oxide film can be preserved, borides ate relatively resistant to oxidation. For example, the borides of vanadium, niobium, tantalum, molybdenum, and tungsten do not oxidize appreciably in air up to temperatures of 1000—1200°C. Zirconium and titanium borides ate fairly resistant up to 1400°C. Engineering and other properties of refractory metal borides have been summarized (1). [Pg.218]

Table 1 fists many metal borides and their observed melting points. Most metals form mote than one boride phase and borides often form a continuous series of solid solutions with one another at elevated temperatures thus close composition control is necessary to achieve particular properties. The relatively small size of boron atoms facilitates diffusion. [Pg.218]

CH2CN)4Yb[( J.-H)2BH]2, and (CgH N)4Yb[( J.-H)2BH4]2 have been stmcturally characterized by x-ray crystallography and shown to contain ytterbium to boron hydride Yb—H—B linkages. Thermal decomposition of lanthanaboranes can be used to generate lanthanide metal borides. [Pg.245]

The structural complexity of borate minerals (p. 205) is surpassed only by that of silicate minerals (p. 347). Even more complex are the structures of the metal borides and the various allotropic modifications of boron itself. These factors, together with the unique structural and bonding problems of the boron hydrides, dictate that boron should be treated in a separate chapter. [Pg.139]

Other electropositive elements have been used (e.g. Li, Na, K, Be, Ca, Al, Fe), but the product is generally amorphous and contaminated with refractory impurities such as metal borides. Massive crystalline boron (96%) has been prepared by reacting BCI3 with zinc in a flow system at 900°C. [Pg.140]

Boron is unique among the elements in the structural complexity of its allotropic modifications this reflects the variety of ways in which boron seeks to solve the problem of having fewer electrons than atomic orbitals available for bonding. Elements in this situation usually adopt metallic bonding, but the small size and high ionization energies of B (p. 222) result in covalent rather than metallic bonding. The structural unit which dominates the various allotropes of B is the B 2 icosahedron (Fig. 6.1), and this also occurs in several metal boride structures and in certain boron hydride derivatives. Because of the fivefold rotation symmetry at the individual B atoms, the B)2 icosahedra pack rather inefficiently and there... [Pg.141]

Figure 6.1 The icosahedron and some of its symmetry elements, (a) An icosahedron has 12 vertices and 20 triangular faces defined by 30 edges, (b) The preferred pentagonal pyramidal coordination polyhedron for 6-coordinate boron in icosahedral structures as it is not possible to generate an infinite three-dimensional lattice on the basis of fivefold symmetry, various distortions, translations and voids occur in the actual crystal structures, (c) The distortion angle 0, which varies from 0° to 25°, for various boron atoms in crystalline boron and metal borides. Figure 6.1 The icosahedron and some of its symmetry elements, (a) An icosahedron has 12 vertices and 20 triangular faces defined by 30 edges, (b) The preferred pentagonal pyramidal coordination polyhedron for 6-coordinate boron in icosahedral structures as it is not possible to generate an infinite three-dimensional lattice on the basis of fivefold symmetry, various distortions, translations and voids occur in the actual crystal structures, (c) The distortion angle 0, which varies from 0° to 25°, for various boron atoms in crystalline boron and metal borides.
The various stoichiometries are not equally common, as can be seen from Fig. 6.5 the most frequently occurring are M2B, MB, MB2, MB4 and MBfi, and these five classes account for 75% of the compounds. At the other extreme RunBg is the only known example of this stoichiometry. Metal-rich borides tend to be formed by the transition elements whereas the boron-rich borides are characteristic of the more electropositive elements in Groups 1-3, the lanthanides and the actinides. Only the diborides MB2 are common to both classes. [Pg.147]

The structures of boron-rich borides (e.g. MB4, MBfi, MBio, MB12, MBe6) are even more effectively dominated by inter-B bonding, and the structures comprise three-dimensional networks of B atoms and clusters in which the metal atoms occupy specific voids or otherwise vacant sites. The structures are often exceedingly complicated (for the reasons given in Section 6.2.2) for example, the cubic unit cell of YB e has ao 2344 pm and contains 1584 B and 24 Y atoms the basic structural unit is the 13-icosahedron unit of 156 B atoms found in -rhombohedral B (p. 142) there are 8 such units (1248 B) in the unit cell and the remaining 336 B atoms are statistically distributed in channels formed by the packing of the 13-icosahedron units. [Pg.149]

Schwetz, K. A., andLipp, A., Boron Carbide, Boron Nitride, and Metal Borides, in Ullmann s Encyclopedia of Industrial Chemistry, 5th Ed., Vol. A4, VCH (1985)... [Pg.259]

Although boron forms borides with many elements, only the borides of the transition metals have been investigated extensively for their CVD characteristics. Boron forms stable borides with the transition metals, and the most refractory of these and those with the greatest potential interest are the borides of the elements of Groups IVa (Ti, Zr, Hf), Va (V, Nb, Ta) and, to a lesser degree. Via (Cr, Mo, W) (see Table... [Pg.323]

The refractory-metal borides have a structure which is dominated by the boron configuration. This clearly favors the metallic properties, such as high electrical and thermal conductivities and high hardness. Chemical stability, which is related to the electronic... [Pg.323]

Metal-boron ratio Metal borides and structure types Boron aggregation... [Pg.128]

Table 2. Structure Types, Boron Coordination and Representatives op Metal Borides with Isolated B Atoms (Filled Metal Host Lattice Compounds)... Table 2. Structure Types, Boron Coordination and Representatives op Metal Borides with Isolated B Atoms (Filled Metal Host Lattice Compounds)...
Metal Boride Structures (Isolated Boron Atoms). [Pg.163]

Borides with Isolated Boron Atoms 6.7.2.1.3. Metal Boride Structures (Isolated Boron Atoms). [Pg.167]

Among metal borides of the formula MjM B or (Mj, M/r)2B, the competing structural units are (a) the antiprism and (b) the trigonal metal prism. In many cases the CUAI2 structure with BMg-antiprismatic B coordination is adopted in close resemblance to transition-metal silicides, but no boron-carbon substitution is ob-served - " . [Pg.167]

Table 2. Crystal Structures and Boron Coordination of Platinum Metal Borides WITH Isolated B Atoms (Owing to Defect Boron Sublattice)... Table 2. Crystal Structures and Boron Coordination of Platinum Metal Borides WITH Isolated B Atoms (Owing to Defect Boron Sublattice)...
Table 1. Metal Borides Structure Types and Representatives with Boron Pairs... [Pg.173]

The formation of alkali-metal borides by direct synthesis requires temperatures of 750-1200°C, depending on the variety of boron utilized and the specific metal. This leads to two important consequences ... [Pg.261]

The problems raised by the preparation of some rare-earth borides such as SmB4, YbB4 and TmB2 are comparable to those found for the alkali borides from the point of view of the volatility of the metals. They dissociate through metal evaporation, yielding boron-rich borides as indicated in 6.7.2.4. [Pg.262]

Structures of the lanthanide nitridoborates appear as layered structures with approximate hexagonal arrangements of metal atoms, and typical coordination preferences of anions. As in many metal nitrides, the nitride ion prefers an octahedral environment such as in lanthanum nitride (LaN). As a terminal constituent of a BNx anion, the nitrogen atom prefers a six-fold environment, such as B-N Lns, where Ln atoms form a square pyramid around N. Boron is typically surrounded by a trigonal prismatic arrangement of lanthanide atoms, as in many metal borides (Fig. 8.10). All known structures of lanthanide nitridoborates compromise these coordination patterns. [Pg.134]

The hardest of the transition-metal borides are the diborides. Their characteristic crystal structure (Figure 10.6) consists of plane layers of close-packed metal atoms separated by plane openly-patterned layers of boron atoms ( chicken-wire pattern). If the metal atoms in the hexagonal close-packed layer have a spacing, d, then the boron atoms have a spacing of d/V3. [Pg.136]

Uses. Amorphous boron is used as an addictive in pyrotechnic mixtures, solid rockets propellants, explosives, etc. Refractory metal borides are used as addic-tives to cemented carbides. High purity boron is used in electronics as a dopant to... [Pg.480]


See other pages where Boron metal borides is mentioned: [Pg.157]    [Pg.219]    [Pg.224]    [Pg.145]    [Pg.146]    [Pg.490]    [Pg.723]    [Pg.325]    [Pg.123]    [Pg.159]    [Pg.168]    [Pg.170]    [Pg.2]    [Pg.148]    [Pg.157]   
See also in sourсe #XX -- [ Pg.216 , Pg.217 , Pg.218 , Pg.219 , Pg.220 , Pg.221 ]




SEARCH



Borides

Boron Nitride and Metal Borides

Boron Nitride, Metal Borides, etc

Boron borides

Boron metals

Elemental Boron and Metal Borides

Metal borides

Metal borides boron atom arrangement

Metalation-boronation

© 2024 chempedia.info