Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Element tetrahedral

Figure 25 compares spectra of three elements tetrahedrally coordinated with oxygen. The identical nature of the chromate and permanganate spectra (even those obtained from a variety of crystalline compounds and aqueous solutions) suggests that identical electrostatic fields exist around both the Cr and the Mn, and that these fields are sufficiently characterized by the first one or two coordination spheres. [Pg.180]

The MOTIF code is a three-dimensional finite-element code capable of simulating steady state or transient coupled/uncoupled variable-density, variable- saturation fluid flow, heat transport, and conservative or nonspecies radionuclide) transport in deformable fractured/ porous media. In the code, the porous medium component is represented by hexahedral elements, triangular prism elements, tetrahedral elements, quadrilateral planar elements, and lineal elements. Discrete fractures are represented by biplanar quadrilateral elements (for the equilibrium equation), and monoplanar quadrilateral elements (for flow and transport equations). [Pg.451]

The evolution of the numerical approaches used for solving the PNP equations has paralleled the evolution of computing hardware. The numerical solution to the PNP equations evolved over the time period of a couple of decades beginning with the simulation of extremely simplified structures " ° to fully three-dimensional models, and with the implementation of sophisticated variants of the algorithmic schemes to increase robustness and performance. Even finite element tetrahedral discretization schemes have been employed successfully to selectively increase the resolution in regions inside the channels. An important aspect of the numerical procedures described is the need for full self-consistency between the force field and the charge distribution in space. It is obtained by coupling a Poisson solver to the Nernst-Planck solver within the iteration scheme described. [Pg.280]

As shown on Fig. 26.24, the system starts from the rest position of the ship with a sinkage equal to its draft T. A 3D mesh of Unite elements (tetrahedral) is constructed with the ship features (i.e., Lpp, B, T, and Cb) and the fluid domain (i.e., h, channel shape, boundary conditions, etc.). A first run of the model is done with null velocity of the ship. The equilibrium model is then calibrated with the ship weight (VFb) and the position of the center of gravity (Aq, Tg), as all hull nodes must have no displacements with the hydrodynamic model results. Once these ship features are set up, the system is ready to start. A small ship velocity AV is imposed in the hydrodynamic model, which gives hull pressure to the equilibrium model. The latter displaces the hull, so the mesh has to be updated by the third model. The system checks the hull displacement. If it is negligible, the ship velocity is increased by AV or the same velocity is retained and a new cycle is begun. The system stops when the velocity has reached the velocity specified by the user or if the ship has grounded. [Pg.758]

TRIFOU is a combined Finite Elements/Boundary Integral formulation code. The BIM formulation in vacuum is suitable for NDT simulation where the probe moves in the air around the test block. The FEM formulation needs more calculation time, but tetrahedral elements enable a large variety of specimens and defect geometries to be modelled. TRIFOU uses a formulation of Maxwell Equations using magnetic field vector h, where h is decomposed as h = hs + hr (hj source field, and hr reaction field). [Pg.141]

The traditional definition of a zeolite refers to microporous, crystalline, hydrated aluminosilicates with a tliree-dimensional framework consisting of comer-linked SiO or AlO tetrahedra, although today the definition is used in a much broader sense, comprising microporous crystalline solids containing a variety of elements as tetrahedral building units. The aluminosilicate-based zeolites are represented by the empirical fonmila... [Pg.2777]

Unlike the forces between ions which are electrostatic and without direction, covalent bonds are directed in space. For a simple molecule or covalently bonded ion made up of typical elements the shape is nearly always decided by the number of bonding electron pairs and the number of lone pairs (pairs of electrons not involved in bonding) around the central metal atom, which arrange themselves so as to be as far apart as possible because of electrostatic repulsion between the electron pairs. Table 2.8 shows the essential shape assumed by simple molecules or ions with one central atom X. Carbon is able to form a great many covalently bonded compounds in which there are chains of carbon atoms linked by single covalent bonds. In each case where the carbon atoms are joined to four other atoms the essential orientation around each carbon atom is tetrahedral. [Pg.37]

The two kinds of covalent bond are not identical, one being a simple covalent bond, a sigma (ct) bond, the other being a stronger (but more reactive) bond called a n bond (p. 56). As in the formation of methane both elements attain noble gas configurations. We can consider the formation of ethene as the linking of two tetrahedral carbon atoms to form the molecule C2H4 represented as ... [Pg.39]

The unequal distribution of charge produced when elements of different electronegativities combine causes a polarity of the covalent bond joining them and, unless this polarity is balanced by an equal and opposite polarity, the molecule will be a dipole and have a dipole moment (for example, a hydrogen halide). Carbon tetrachloride is one of a relatively few examples in which a strong polarity does not result in a molecular dipole. It has a tetrahedral configuration... [Pg.51]

The element before carbon in Period 2, boron, has one electron less than carbon, and forms many covalent compounds of type BX3 where X is a monovalent atom or group. In these, the boron uses three sp hybrid orbitals to form three trigonal planar bonds, like carbon in ethene, but the unhybridised 2p orbital is vacant, i.e. it contains no electrons. In the nitrogen atom (one more electron than carbon) one orbital must contain two electrons—the lone pair hence sp hybridisation will give four tetrahedral orbitals, one containing this lone pair. Oxygen similarly hybridised will have two orbitals occupied by lone pairs, and fluorine, three. Hence the hydrides of the elements from carbon to fluorine have the structures... [Pg.57]

The elements of Period 2 (Li—F) cannot have a co valency greater than 4, because not more than four orbitals are available for bonding. In Period 3 (Na—Cl) similar behaviour would be expected, and indeed the molecule SiH4 is tetrahedral like that of CH4, and PH3 is like NH3 with a lone pair occupying one tetrahedral position. [Pg.57]

All Group IV elements form tetrachlorides, MX4, which are predominantly tetrahedral and covalent. Germanium, tin and lead also form dichlorides, these becoming increasingly ionic in character as the atomic weight of the Group IV element increases and the element becomes more metallic. Carbon and silicon form catenated halides which have properties similar to their tetrahalides. [Pg.195]

Ammonia is a colourless gas at room temperature and atmospheric pressure with a characteristic pungent smell. It is easily liquefied either by cooling (b.p. 240 K) or under a pressure of 8-9 atmospheres at ordinary temperature. Some of its physical and many of its chemical properties are best understood in terms of its structure. Like the other group head elements, nitrogen has no d orbitals available for bond formation and it is limited to a maximum of four single bonds. Ammonia has a basic tetrahedral arrangement with a lone pair occupying one position ... [Pg.216]

The number of terms of a complete polynomial of any given degree will hence correspond to the number of nodes in a triangular element belonging to this family. An analogous tetrahedral family of finite elements that corresponds to complete polynomials in terms of three spatial variables can also be constructed for three-dimensional analysis. [Pg.24]

Chiral Center. The chiral center, which is the chiral element most commonly met, is exemplified by an asymmetric carbon with a tetrahedral arrangement of ligands about the carbon. The ligands comprise four different atoms or groups. One ligand may be a lone pair of electrons another, a phantom atom of atomic number zero. This situation is encountered in sulfoxides or with a nitrogen atom. Lactic acid is an example of a molecule with an asymmetric (chiral) carbon. (See Fig. 1.13b.)... [Pg.46]

Elemental phosphoms is produced and marketed in the a-form of white or yellow phosphoms, the tetrahedral ahotrope. A small amount of ted amorphous phosphoms, P, is produced by conversion from white phosphoms. White phosphoms as the element is characterized by its combustion in air to form phosphoms pentoxide. Consequentiy, white phosphoms is generally stored and handled under water. Elemental white phosphoms is also highly toxic, and suitable precautions ate requited by those who manufacture or handle it. The black phosphoms modification prepared under high pressure does not have commercial importance. [Pg.347]

The dominant commercial form of elemental phosphoms is the a-white aHotrope. a-White phosphoms is often designated simply as because the soHd consists of tetrahedral P molecules. In its pure form, it is a white soHd that forms a clear Hquid when melted. However, the commercial product is generally somewhat yellow, both as a soHd and as a Hquid, owing to the presence of small amounts of a ted phosphoms aHotrope. Commercial white phosphoms may also be slightly gray in color because of incomplete separation of coke dusts and other impurities generated in the manufacturing process. [Pg.347]

Salts of perrhenic acid may be obtained in acid—base reactions, and may include the tetrahedral ReO anion or the octahedral anion ReO , eg, in Ba (ReOg)2 [13598-09-9], Ammonium perrhenate and perrhenic acid, as well as rhenium metal, are sold by the primary suppHers of this element. [Pg.164]

The tetrahedrally bonded materials, such as Si and Ge, possess only positional disorder however, materials of this type exhibit high density of defect states (DOS). It is only with the addition of elements such as hydrogen and/or a halogen, typically fluorine, that the DOS is reduced to a point such that electronic device appHcations emerge. These materials contain up to - 10 atomic % hydrogen, commonly called hydrogenated amorphous siHcon (i -Si H). [Pg.357]

Trialkyl- and triarylarsine sulfides have been prepared by several different methods. The reaction of sulfur with a tertiary arsine, with or without a solvent, gives the sulfides in almost quantitative yields. Another method involves the reaction of hydrogen sulfide with a tertiary arsine oxide, hydroxyhahde, or dihaloarsorane. X-ray diffraction studies of triphenylarsine sulfide [3937-40-4], C gH AsS, show the arsenic to be tetrahedral the arsenic—sulfur bond is a tme double bond (137). Triphenylarsine sulfide and trimethylarsine sulfide [38859-90-4], C H AsS, form a number of coordination compounds with salts of transition elements (138,139). Both trialkyl- and triarylarsine selenides have been reported. The trialkyl compounds have been prepared by refluxing trialkylarsines with selenium powder (140). The preparation of triphenylarsine selenide [65374-39-2], C gH AsSe, from dichlorotriphenylarsorane and hydrogen selenide has been reported (141), but other workers could not dupHcate this work (140). [Pg.338]

The extent of substitution of magnesium and siUcon by other cations in the chrysotile stmcture is limited by the stmctural strain that would result from replacement with ions having inappropriate radii. In the octahedral layer (bmcite), magnesium can be substituted by several divalent ions, Fe ", Mn, or Ni ". In the tetrahedral layer, siUcon may be replaced by Fe " or Al ", leaving an anionic vacancy. Most of the other elements which are found in vein fiber samples, or in industrial asbestos fibers, are associated with interstitial mineral phases. Typical compositions of bulk chrysotile fibers from different locations are given in Table 3. [Pg.348]

The ability of C to catenate (i.e. to form bonds to itself in compounds) is nowhere better illustrated than in the compounds it forms with H. Hydrocarbons occur in great variety in petroleum deposits and elsewhere, and form various homologous series in which the C atoms are linked into chains, branched chains and rings. The study of these compounds and their derivatives forms the subject of organic chemistry and is fully discussed in the many textbooks and treatises on that subject. The matter is further considered on p. 374 in relation to the much smaller ability of other Group 14 elements to form such catenated compounds. Methane, CH4, is the archetype of tetrahedral coordination in molecular compounds some of its properties are listed in Table 8.4 where they are compared with those of the... [Pg.301]


See other pages where Element tetrahedral is mentioned: [Pg.80]    [Pg.275]    [Pg.80]    [Pg.5187]    [Pg.258]    [Pg.645]    [Pg.5186]    [Pg.80]    [Pg.275]    [Pg.80]    [Pg.5187]    [Pg.258]    [Pg.645]    [Pg.5186]    [Pg.308]    [Pg.416]    [Pg.51]    [Pg.33]    [Pg.114]    [Pg.256]    [Pg.284]    [Pg.53]    [Pg.73]    [Pg.358]    [Pg.67]    [Pg.252]    [Pg.337]    [Pg.195]    [Pg.89]    [Pg.124]    [Pg.159]    [Pg.206]    [Pg.252]    [Pg.268]    [Pg.340]   
See also in sourсe #XX -- [ Pg.487 ]




SEARCH



Metallic elements, tetrahedral complex

Metallic elements, tetrahedral complex formation

Tetrahedral reduction with elemental

© 2024 chempedia.info