Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrostatic interactions, theoretical

In some cases, e.g., the Hg/NaF q interface, Q is charge dependent but concentration independent. Then it is said that there is no specific ionic adsorption. In order to interpret the charge dependence of Q a standard explanation consists in assuming that Q is related to the existence of a solvent monolayer in contact with the wall [16]. From a theoretical point of view this monolayer is postulated as a subsystem coupled with the metal and the solution via electrostatic and non-electrostatic interactions. The specific shape of Q versus a results from the competition between these interactions and the interactions between solvent molecules in the mono-layer. This description of the electrical double layer has been revisited by... [Pg.804]

Furthermore, the relatively high reactivity of 2-chloropyridine i -oxide as compared to that of the 4-isomer and the detailed inconsistency with theoretical parameters have also been explained in terms of built-in solvation via either direct electrostatic interaction or hydrogen bonding (structures 15 and 16, respectively). [Pg.311]

Nakagaki1U) has given a theoretical treatment of the electrostatic interactions by using the Gouy-Chapman equation for the relation between the surface charge density oe and surface potential /. The experimental data for (Lys)n agrees very well with the theoretical curve obtained. [Pg.18]

Another problem arises from the presence of higher terms in the multipole expansion of the electrostatic interaction. While theoretical formulas exist for these also, they are even more approximate than those for the dipole-dipole term. Also, there is the uncertainty about the exact form of the repulsive interaction. Quite arbitrarily we shall group the higher multipole terms with the true repulsive interaction and assume that the empirical repulsive term accounts for both. The principal merit of this assumption is simplicity the theoretical and experimental coefficients of the R Q term are compared without adjustment. Since the higher multipole terms are known to be attractive and have been estimated to amount to about 20 per cent of the total attractive potential at the minimum, a rough correction for their possible effect can be made if it is believed that this is a preferable assumption. [Pg.70]

In the following paper, the possibility of equilibration of the primarily adsorbed portions of polymer was analyzed [20]. The surface coupling constant (k0) was introduced to characterize the polymer-surface interaction. The constant k0 includes an electrostatic interaction term, thus being k0 > 1 for polyelectrolytes and k0 1 for neutral polymers. It was found that, theoretically, the adsorption characteristics do not depend on the equilibration processes for k0 > 1. In contrast, for neutral polymers (k0 < 1), the difference between the equilibrium and non-equilibrium modes could be considerable. As more polymer is adsorbed, excluded-volume effects will swell out the loops of the adsorbate, so that the mutual reorientation of the polymer chains occurs. [Pg.139]

Scheme 41 Experimental and theoretical supports for the electrostatic interaction... Scheme 41 Experimental and theoretical supports for the electrostatic interaction...
Theoretical treatment of the viscosity-concentration relationship for polyelectrolyte solutions would involve both the cumbersome statistics of highly elongated chains beyond the range of usefulness of the Gaussian approximation and the even more difficult problem of their electrostatic interactions when highly charged. There appears to be little hope for a satisfactory solution of this problem from theory. Fuoss has shown, however, that experimental data may be handled satisfactorily through the use of the empirical relation ... [Pg.636]

Theoretical studies aimed at rationalizing the interaction between the chiral modifier and the pyruvate have been undertaken using quantum chemistry techniques, at both ab initio and semi-empirical levels, and molecular mechanics. The studies were based on the experimental observation that the quinuclidine nitrogen is the main interaction center between cinchonidine and the reactant pyruvate. This center can either act as a nucleophile or after protonation (protic solvent) as an electrophile. In a first step, NH3 and NH4 have been used as models of this reaction center, and the optimal structures and complexation energies of the pyruvate with NH3 and NHa, respectively, were calculated [40]. The pyruvate—NHa complex was found to be much more stable (by 25 kcal/mol) due to favorable electrostatic interaction, indicating that in acidic solvents the protonated cinchonidine will interact with the pyruvate. [Pg.56]

Attractive or repulsive interaction between two solid surfaces should play an important role in the interfacial frictional behavior [87,92-95]. From previous theoretical [89] and experimental investigations [87, 95], it was known that the attractive interaction result in a high friction and repulsive interaction results in low friction force. To characterize the interfacial molecular structure between two solids under electrostatic interaction is also important to elucidate the frictional properties of two solids. [Pg.89]

Changes in activity coefficients (and hence the relationship between concentration and chemical activity) due to the increased electrostatic interaction between ions in solution can be nicely modeled with well-known theoretical approaches such as the Debye-Huckel equation ... [Pg.13]

The control parameter in an STM, the current in the tunneling junction, is always due to the same physical process. An electron in one lead of the junction has a nonvanishing probability to pass the potential barrier between the two sides and to tunnel into the other lead. However, this process is highly influenced by (i) the distance between the leads, (ii) the chemical composition of the surface and tip, (iii) the electronic structure of both the systems, (iv) the chemical interactions between the surface and the tip atoms, (v) the electrostatic interactions of the sample and tip. The main problem, from a theoretical point of view, is that the order of importance of all these effects depends generally on the distance and therefore on the tunneling conditions [5-8]. [Pg.98]

Theoretical calculations on the dithiazolyl radical 4 (R=CF3) have recently shown that n -n dimerisation was unfavourable but association of two such dimers via electrostatic interactions generated a thermodynamically stable tetramer consistent with single crystal X-ray studies. Thus while the value of [AE-P ] may favour (or disfavour) dimer formation, the van der Waals, dipole contributions and electrostatic interactions to the lattice enthalpy should not be underestimated in assessing the thermodynamic stability or instability of these... [Pg.736]

A theoretical model for the adsorption of metals on to clay particles (<0.5 pm) of sodium montmorillonite, has been proposed, and experimental data on the adsorption of nickel and zinc have been discussed in terms of fitting the model and comparison with the Gouy-Chapman theory [10]. In clays, two processes occur. The first is a pH-independent process involving cation exchange in the interlayers and electrostatic interactions. The second is a pH-dependent process involving the formation of surface complexes. The data generally fitted the clay model and were seen as an extension to the Gouy-Chapman model from the surface reactivity to the interior of the hydrated clay particle. [Pg.362]

From the thermodynamic viewpoint, the basic statistical theory is still too complex to provide useful working equations, but it does suggest forms of equations with some purely theoretical terms, and other terms including parameters to be evaluated empirically. In general, the theoretical terms arise from the electrostatic interactions which are simple and well-known while the empirical, terms relate to short-range interionic forces whose characteristics are qualitatively but not quantitatively known from independent sources. But, as we shall see, this division is not complete - there are interactions between the two categories. [Pg.452]


See other pages where Electrostatic interactions, theoretical is mentioned: [Pg.182]    [Pg.477]    [Pg.478]    [Pg.207]    [Pg.170]    [Pg.324]    [Pg.116]    [Pg.176]    [Pg.572]    [Pg.767]    [Pg.100]    [Pg.648]    [Pg.403]    [Pg.116]    [Pg.121]    [Pg.480]    [Pg.196]    [Pg.50]    [Pg.506]    [Pg.98]    [Pg.40]    [Pg.86]    [Pg.446]    [Pg.585]    [Pg.586]    [Pg.55]    [Pg.76]    [Pg.171]    [Pg.173]    [Pg.17]    [Pg.301]    [Pg.315]    [Pg.57]    [Pg.41]   


SEARCH



Interaction electrostatic

© 2024 chempedia.info