Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic structures, surface-specific

The study of the surface electronic structure requires specific tools. For example, in spectroscopic experiments, in order to enhance the surface signal with respect to the bulk one, to obtain information on the outer layers, one has to send or detect particles with small mean free paths, which mainly sample the few outer layers. Similarly, special care has to be taken in the numerical approaches. We will quickly review some aspects of this question, both from the experimental and the theoretical sides. [Pg.68]

In this chapter, we will focus on some of the recent developments in understanding the influence of solution and electrochemical conditions over model single-crystal surfaces. Specifically, we will review work applying electronic structure methods to probe electrocatalytic mechanisms occurring at this complex interface. [Pg.94]

Figure 8.12 Relationships between the catalytic properties and electronic structure of Pt3M alloys correlation between the specific activity for the oxygen reduction reaction measured experimentally by a rotating disk electrode on Pt3M surfaces in 0.1 M HCIO4 at 333 K and 1600 lev/min versus the li-band center position for (a) Pt-skin and (b) Pt-skeleton surfaces. (Reprinted with permission from Stamenkovic et al. [2007b]. Copyright 2007. Nature Pubhshing Group.)... Figure 8.12 Relationships between the catalytic properties and electronic structure of Pt3M alloys correlation between the specific activity for the oxygen reduction reaction measured experimentally by a rotating disk electrode on Pt3M surfaces in 0.1 M HCIO4 at 333 K and 1600 lev/min versus the li-band center position for (a) Pt-skin and (b) Pt-skeleton surfaces. (Reprinted with permission from Stamenkovic et al. [2007b]. Copyright 2007. Nature Pubhshing Group.)...
Although the theoretical roots of this technique are very well established, it is more often used as a flexible surface which can be adjusted to lit either exprimental data or data established by better electronic-structure methods. The LEPS formalism has also been extensively used to explore the relationships between the potential energy surface and the details of chemical dynamics . Because of the widespread use of this potential for studying gas-phase reactions, the specific form of the equations will not be discussed here. The interested reader is instead referred to references which discuss this approach in more detail . ... [Pg.306]

The combined use of the modem tools of surface science should allow one to understand many fundamental questions in catalysis, at least for metals. These tools afford the experimentalist with an abundance of information on surface structure, surface composition, surface electronic structure, reaction mechanism, and reaction rate parameters for elementary steps. In combination they yield direct information on the effects of surface structure and composition on heterogeneous reactivity or, more accurately, surface reactivity. Consequently, the origin of well-known effects in catalysis such as structure sensitivity, selective poisoning, ligand and ensemble effects in alloy catalysis, catalytic promotion, chemical specificity, volcano effects, to name just a few, should be subject to study via surface science. In addition, mechanistic and kinetic studies can yield information helpful in unraveling results obtained in flow reactors under greatly different operating conditions. [Pg.2]

Boudart (223) suggested that all reactions might not be equally sensitive to the geometric arrangements in various metal surfaces or to the differences in the electronic structure of sites in different geometric environments (coordination). Boudart divided the reactions into two groups (I) structure insensitive and (II) structure sensitive. The operational criterion of structure sensitivity is the specific activity (the rate per unit surface area) or, the turnover numbers (TONs) (the rate per site) TONs should differ by more than a factor of 5-10 when the dispersion D is varied sufficiently. Bond (224) formulated similar ideas and also suggested several reasons why the variations of TONs with D can monotonically decrease (antipathic), mono-tonically increase (sympathetic), or show a maximum. [Pg.182]

The reactivity of a surface depends on many factors. These include the adsorption energies of chemical species and their dissociation behavior, their diffusion on the surface, the adatom-adatom interactions, the active sites where a chemical reaction can occur, and the desorption behavior of a new chemical species formed on the surface. The site specificity depends on at least three factors the atomic configuration of the surface, the electronic structures of the surface, and the localized surface field. In atom-probe experiments, the desorption sites can be revealed by a timegated image of an imaging atom-probe as well as by an aiming study with a probe-hole atom-probe, the electronic structure effect of a chemical reaction can be investigated by the emitter material specificity, and the surface field can be modified by the applied field. [Pg.297]

As mentioned above, the information contained in STM images pertains principally to the electronic structure of the surface, and (as for most types of microscopy) STM provides no direct insight into the chemical identities of structures. This lack of chemical specificity often makes it difficult to relate the observed structures of complex clusters, molecular adsorbates, or reaction intermediates to their chemical nature and conformation on the surface. Theoretical electronic-structure calculations are therefore commonly employed to assist in the interpretation of STM results. The theoretical calculations provide complementary information about the possible ground-state configurations of samples and can be used to generate fairly accurate simulations of STM images. [Pg.105]


See other pages where Electronic structures, surface-specific is mentioned: [Pg.330]    [Pg.119]    [Pg.170]    [Pg.94]    [Pg.502]    [Pg.2]    [Pg.50]    [Pg.362]    [Pg.116]    [Pg.78]    [Pg.426]    [Pg.261]    [Pg.257]    [Pg.63]    [Pg.382]    [Pg.89]    [Pg.73]    [Pg.143]    [Pg.21]    [Pg.147]    [Pg.181]    [Pg.407]    [Pg.68]    [Pg.264]    [Pg.303]    [Pg.2]    [Pg.265]    [Pg.374]    [Pg.118]    [Pg.839]    [Pg.1]    [Pg.62]    [Pg.63]    [Pg.79]    [Pg.138]    [Pg.258]    [Pg.453]    [Pg.102]    [Pg.393]    [Pg.135]    [Pg.115]   
See also in sourсe #XX -- [ Pg.8 ]

See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Electron specificity

Specific electronic structure

Specific structure

Specific surface

Surface electron structure

Surface electronic

Surface electrons

Surface specificity

Surface specifity

Surfaces electronic structure

© 2024 chempedia.info