Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electroless deposition mixed-potential theory

A series of nucleation and growth models was developed by, for example, Bewick et al. (11), Armstrong and Harrison (16), and Scharifker and Hills (17). Amblart et al. (18) have shown that nickel epitaxial growth starts with the formation of three-dimensional epitaxial crystallites. An electrochemical model for the process of electroless metal depositions (mixed-potential theory) was suggested by Paunovic (14) and Saito (14b). [Pg.4]

Mital et al. [40] studied the electroless deposition of Ni from DMAB and hypophosphite electrolytes, employing a variety of electrochemical techniques. They concluded that an electrochemical mechanism predominated in the case of the DMAB reductant, whereas reduction by hypophosphite was chemically controlled. The conclusion was based on mixed-potential theory the electrochemical oxidation rate of hypophosphite was found, in the absence of Ni2 + ions, to be significantly less than its oxidation rate at an equivalent potential during the electroless process. These authors do not take into account the possible implication of Ni2+ (or Co2+) ions to the mechanism of electrochemical reactions of hypophosphite. [Pg.256]

In the mixed potential theory (MPT) model, both partial reactions occur randomly on the surface, both with respect to time and space. However, given the catalytic nature of the reductant oxidation reaction, it may be contended that such a reaction would tend to favor active sites on the surface, especially at the onset of deposition, and especially on an insulator surface catalyzed with Pd nuclei. Since each reaction strives to reach its own equilibrium potential and impose this on the surface, a situation is achieved in which a compromise potential, known as the mixed potential (.Emp), is assumed by the surface. Spiro [27] has argued the mixed potential should more correctly be termed the mixture potential , since it is the potential adopted by the complete electroless solution which comprises a mixture of reducing agent and metal ions, along with other constituents. However, the term mixed potential is deeply entrenched in the literature relating to several systems, not just electroless deposition. [Pg.229]

The incorporation of a third element, e.g. Cu, in electroless Ni-P coatings has been shown to improve thermal stability and other properties of these coatings [99]. Chassaing et al. [100] carried out an electrochemical study of electroless deposition of Ni-Cu-P alloys (55-65 wt% Ni, 25-35 wt% Cu, 7-10 wt% P). As mentioned earlier, pure Cu surfaces do not catalyze the oxidation of hypophosphite. They observed interactions between the anodic and cathodic processes both reactions exhibited faster kinetics in the full electroless solutions than their respective half cell environments (mixed potential theory model is apparently inapplicable). The mechanism responsible for this enhancement has not been established, however. It is possible that an adsorbed species related to hypophosphite mediates electron transfer between the surface and Ni2+ and Cu2+, rather in the manner that halide ions facilitate electron transfer in other systems, e.g., as has been recently demonstrated in the case of In electrodeposition from solutions containing Cl [101]. [Pg.254]

The mixed potential theory (MPT) model has stimulated much research in electroless deposition from an electrochemical standpoint. In this sense, the MPT model has been of considerable value in promoting our understanding of the electroless deposition process. [Pg.269]

An electrochemical model for the process of electroless metal deposition was suggested by Paunovic (10) and Saito (8) on the basis of the Wagner-Traud (1) mixed-potential theory of corrosion processes. According to the mixed-potential theory of electroless deposition, the overall reaction given by Eq. (8.2) can be decomposed into one reduction reaction, the cathodic partial reaction. [Pg.140]

Wagner-Traud Diagram, According to the mixed-potential theory, the overall reaction of the electroless deposition, [Eq. (8.2)] can be described electrochemically in terms of three current-potential i-E) curves, as shown schematically in Eigure 8.2. First, there are two current-potential curves for the partial reactions (solid curves) (1) ic =f(E), the current-potential curve for the reduction of ions, recorded from the rest potential E eq M the absence of the reducing agent Red (when the activity of is equal to 1, eq,M E m) and (2) = f(E), the current-potential... [Pg.141]

Electroless Deposition of Copper. The basic ideas of the mixed-potential theory were tested by Paunovic (10) for the case of electroless copper deposition from a cupric sulfate solution containing ethylenediaminetetraacetic acid (EDTA) as a complexing agent and formaldehyde (HCHO) as the reducing agent (Red). The test involved a comparison between direct experimental values for and the rate of deposition with those derived theoretically from the current-potential curves for partial reactions on the basis of the mixed-potential theory. [Pg.143]

Thus, one concludes that the mixed-potential theory is essentially verified for the case of electroless copper deposition. These conclusions were later confirmed by Donahue (15), Molenaar et al. (25), and El-Raghy and Abo-Salama (33). The mixed-potential theory has been verified for electroless copper deposition as well using hypophosphite as the reducing agent (72). [Pg.145]

Comparison between the values of the mixed potential and the rate of deposition via direct determination with those derived from the mixed-potential theory is very good. Thus, the mixed-potential theory was verified for this case of electroless Ni deposition. [Pg.146]

Electroless Deposition of Gold. Okinaka (21) verified the mixed-potential theory for the case of electroless gold deposition. Eigure 8.6 shows that the partial cathodic... [Pg.146]

Electroless Deposition in the Presence of Interfering Reactions. According to the mixed-potential theory, the total current density, is a result of simple addition of current densities of the two partial reactions, 4 and However, in the presence of interfering (or side) reactions, 4 and/or may be composed of two or more components themselves, and verification of the mixed-potential theory in this case would involve superposition of current-potential curves for the electroless process investigated with those of the interfering reactions in order to correctly interpret the total i-E curve. Two important examples are discussed here. [Pg.147]

Conclusions. The discussion in this section shows the validity of the mixed-potential theory for electroless deposition of Cu, Ni, and An. The discussions in the sections Electroless Deposition in the Presence of Interfering Reactions and Interaction Between Partial Reactions illustrate the complexities of electroless processes and the presence of a variety of factors that should be taken into account when applying the mixed-potential theory to the electroless processes. [Pg.148]

Wagner-Traud Diagram. According to the mixed-potential theory, the overall reaction of the electroless deposition, [Eq. (8.2)] can be described electrochemically in terms of three current-potential (i-E) curves, as shown schematically in Figure 8.2. [Pg.135]

Interaction between Partial Reactions. The original mixed-potential theory assumes that the two partial reactions are independent of each other (1). In some cases this is a valid assumption, as was shown earlier in this chapter. However, it was shown later that the partial reactions are not always independent of each other. For example, Schoenberg (13) has shown that the methylene glycol anion (the formaldehyde in an alkaline solution), the reducing agent in electroless copper deposition, enters the first coordination sphere of the copper tartrate complex and thus influences the rate of the cathodic partial reaction. Ohno and Haruyama (37) showed the presence of interference in partial reactions for electroless deposition of Cu, Co, and Ni in terms of current-potential curves. [Pg.141]

The two partial reactions (2) and (3) determine the potential of electroless deposition, called mixed potential. The concept presented above is called the mixed potential theory , a term derived from a concept proposed for interpreting corrosion... [Pg.58]

According to the mixed potential theory, the overall reaction should be interpretable simply by superimposing the respective electrochemical behavior of the two partial reactions, determined independently. More recent studies, however, show that electroless deposition processes are much more complicated than represented by the simple mixed potential theory described above. Interdependence of partial reactions and participation of a third reaction are among the complications which limit the significance of simple combination of independently studied partial reactions. Examples of such complications Eire discussed in the subsequent sections. [Pg.59]

An alternative method of presenting the current-potential curves for electroless metal deposition is the Evans diagram. In this method, the sign of the current density is suppressed. Figure 22 shows a general Evans diagram with current-potential functions i = f(E) for the individual electrode processes, Eqs (43 and 44). According to this presentation of the mixed-potential theory, the current-potential curves for individual processes, ic = iu = f(E) and ia = = f(E), intersect. The... [Pg.115]


See other pages where Electroless deposition mixed-potential theory is mentioned: [Pg.225]    [Pg.228]    [Pg.236]    [Pg.241]    [Pg.269]    [Pg.142]    [Pg.145]    [Pg.136]    [Pg.139]    [Pg.190]    [Pg.193]    [Pg.201]    [Pg.206]    [Pg.234]    [Pg.117]    [Pg.444]    [Pg.462]    [Pg.467]    [Pg.474]    [Pg.475]   
See also in sourсe #XX -- [ Pg.140 , Pg.141 , Pg.142 , Pg.143 , Pg.144 , Pg.145 , Pg.146 , Pg.147 ]

See also in sourсe #XX -- [ Pg.134 , Pg.135 , Pg.136 ]




SEARCH



Deposition potential

Mixed potential

Mixed potential theory

Mixed theory

Mixing theory

Potential theory

Theories potential theory

© 2024 chempedia.info