Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemistry electron number

In organic chemistry electrons are, as a rule, transferred one by one [7]. This is in contrast to inorganic electron transfer reactions, where two- and three-electron processes are common. However, in order to preserve the formalism generally used in electrochemistry, the number of electrons n is maintained in most formulas, although n equals one in practically all cases. [Pg.96]

It is important to calculate the number of electrons in order to evaluate the charge density and the current density through quantum electrochemistry. The number of electrons between the energy E and E+dE can be calculated first considering the density of states, p( ), at a given energy E ... [Pg.86]

This volume contains six chapters and a cumulative index for numbers 1-33. The topics covered include the potential of zero charge nonequilibrium fluctuation in the corrosion process conducting polymers, electrochemistry, and biomimicking processes microwave (photo)-electrochemistry improvements in fluorine generation and electronically conducting polymer films. [Pg.651]

In the first part of the present review, new techniques of preparation of modified electrodes and their electrochemical properties are presented. The second part is devoted to applications based on electrochemical reactions of solute species at modified electrodes. Special focus is given to the general requirements for the use of modified electrodes in synthetic and analytical organic electrochemistry. The subject has been reviewed several times Besides the latest general review by Murray a number of more recent overview articles have specialized on certain aspects macro-molecular electronics theoretical aspects of electrocatalysis organic applicationssensor electrodes and applications in biological and medicinal chemistry. [Pg.51]

Based on the theoretical electrochemistry method outlined above in combination with DFT calculations, the potential energy of the intermediates can be obtained at a given potential, (Fig. 3.5). Since aU steps involve exactly one proton and electron transfer, the height of the different steps scales directly with the potential. To calculate the potential energy landscape at the equilibrium potential, the levels are moved down hyn X 1.23 eV, where n is the number of the electrons at the given state (the horizontal axis in Fig. 3.5). [Pg.66]

The IR bands in a number of nickel complexes of triaryl formazans have been assigned by Arnold and Schiele.415 A similar assignment of the electronic bands has been carried out.414 LCAO-MO calculations correlate well with these assignments417 and have been extended to include both inner ligand transitions as well as charge transfer bands and d—d transitions.418 EPR spectra have been used to study the nature of bonding in copper complexes of heterocyclic-containing formazans.419 Metal formazan complexes have also been studied by electrochemistry.283,398 420-422... [Pg.273]

The new edition of Principles of Electrochemistry has been considerably extended by a number of new sections, particularly dealing with electrochemical material science (ion and electron conducting polymers, chemically modified electrodes), photoelectrochemistry, stochastic processes, new aspects of ion transfer across biological membranes, biosensors, etc. In view of this extension of the book we asked Dr Ladislav Kavan (the author of the section on non-electrochemical methods in the first edition) to contribute as a co-author discussing many of these topics. On the other hand it has been necessary to become less concerned with some of the classical topics the details of which are of limited importance for the reader. [Pg.11]

Illumination is a relevant parameter in the electrochemistry of silicon because photogenerated carriers may initiate or contribute to the charge exchange at the electrolyte-silicon interface. If an electrode is illuminated, photogenerated electron-hole pairs are generated corresponding to the number of absorbed photons. This number depends on spectral distribution, total illumination intensity and losses due to optical reflection and transmission. The number of electron-hole... [Pg.72]

Electrochemistry is essentially based on the relationships between chemical changes and flows of electrons (i.e. the passage of electricity). In this connection it is well known that electron transfer processes play an essential role in many physical, chemical and biological mechanisms and a number of such examples will be illustrated in the text. Perhaps in no other field of chemical reactivity has one looked for and found so many relationships between theory and experimental measurements. [Pg.7]

In the case of aqueous solutions containing dissolved particles (solutes), a number of localized electron levels associated with solute particles Eirise in the mobility gap of aqueous solutions as shown in Fig. 2-34. These localized electron levels of solutes may be compared with the localized impiuity levels in semiconductors. In electrochemistry, the electron levels of the solutes of general interest are those located within the energy range from - 4 eV to - 6 eV (around the electron levels of the hydrogen and oxygen electrode reactions) in the mobility gap. [Pg.47]

The reducing equivalents transferred can be considered either as hydrogen atoms or electrons. The driving force for the reaction, E, is the reduction/oxidation (redox) potential, and can be measured by electrochemistry it is often expressed in millivolts. The number of reducing equivalents transferred is n. The redox potential of a compound A depends on the concentrations of the oxidized and reduced species [Aqx] and [Area] according to the Nernst equation ... [Pg.253]

Number of electrons (n). There is one final divergence from standard lUPAC usage that may cause confusion. In normal thermodynamics, the symbol n is used for amount of substance . An older convention is followed in electroanalytical work, and electrochemistry in general, such that n means simply the number of electrons involved in a redox reaction. Normal lUPAC representation would use V for this latter parameter since the number of electrons is a stoichiometric quantity. The opposition from electrochemists has been so concerted that lUPAC now allows the use of n as a permissible deviation from its standard practice. [Pg.8]

ReCl3(PPh3)(benzil)] reacts with bipy and related ligands or terpy to form a number of rhe-nium(III) and rhenium(II) compounds which are useful precursors for the synthesis of lower-valent rhenium complexes. " Thus, reduction of [Re(bipy)3][PF6]2 with zinc amalgam results in the rhenium(I) compound [Re(bipy)3][PF6] in excellent yields. The corresponding terpyridyl bis-chelate [Re(terpy)2][PF6] has been prepared in a similar manner. " The electrochemistry of the products provides a convenient measure of the chemical reactivity associated with the redox processes. Thus, the one-electron oxidation of [Re(bipy)3]" is reversible at -0.33 V, whereas the Re"/Re" redox couple is irreversible and occurs at relatively low potentials (-1-0.61 V) which is consistent with the instability of [Re(bipy)3] + in solution. However, in the presence of a small coordinating molecule such as CNBu, oxidation to the rhenium(III) state is readily available by the formation of seven-coordinate complexes of the composition [Re(bipy)3(L)]. " ... [Pg.358]

Specific reviews of the electrochemistry of mononuclear carbonyls have not appeared. The primary oxidation of the mononuclear carbonyls leads to the formation of 17-electron radical cations with half-lives in the order of seconds or less in MeCN electrolytes [14, 15]. Decay may take place by disproportionation, CO loss, and/or nucleophilic attack. Electrogeneration in solvents of low nucleophilicity such as trifluoroacetic acid can enhance the stability of the cations and indicates that nucleophilic attack is a major pathway for decay. This is concordant with the stability order [Cr(CO)g]+ > [Fe(CO)5]+ [Ni(CO)4]+, where the lower coordination numbers favor nucleophilic attack and... [Pg.226]

The concept of oxidation has been expanded from a simple combination with oxygen to a process in which electrons are transferred. Oxidation cannot take place without reduction, and oxidation numbers can be used to summarize the transfer of electrons in redox reactions. These basic concepts can be applied to the principles of electrochemical cells, electrolysis, and applications of electrochemistry. [Pg.179]

The foregoing considerations can also be applied to the electrochemistry of a number of organic compounds in contact with aqueous buffers [107, 119-125]. Here, protonation/deprotonation reactions are coupled with electron transfer processes, as described for the case of indigoid-, anthraquinonic-, and flavonoid-type pigments, among others. In contact with aqueous electrolytes, the electrochemical processes can generally be described as ... [Pg.43]

In the following, we will discuss a number of different adsorption systems that have been studied in particular using X-ray emission spectroscopy and valence band photoelectron spectroscopy coupled with DFT calculations. The systems are presented with a goal to obtain an overview of different interactions of adsorbates on surfaces. The main focus will be on bonding to transition metal surfaces, which is of relevance in many different applications in catalysis and electrochemistry. We have classified the interactions into five different groups with decreasing adsorption bond strength (1) radical chemisorption with a broken electron pair that is directly accessible for bond formation (2) interactions with unsaturated it electrons in diatomic molecules (3) interactions with unsaturated it electrons in hydrocarbons ... [Pg.68]


See other pages where Electrochemistry electron number is mentioned: [Pg.413]    [Pg.219]    [Pg.314]    [Pg.1411]    [Pg.211]    [Pg.12]    [Pg.51]    [Pg.103]    [Pg.350]    [Pg.427]    [Pg.8]    [Pg.15]    [Pg.71]    [Pg.85]    [Pg.50]    [Pg.14]    [Pg.154]    [Pg.499]    [Pg.841]    [Pg.3]    [Pg.15]    [Pg.58]    [Pg.2]    [Pg.107]    [Pg.86]    [Pg.613]    [Pg.649]    [Pg.667]    [Pg.1063]    [Pg.920]    [Pg.247]    [Pg.178]    [Pg.188]    [Pg.168]   
See also in sourсe #XX -- [ Pg.877 ]




SEARCH



Electron number

© 2024 chempedia.info