Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemistry electrochemical polarization

This chapter outlines the basic aspects of interfacial electrochemical polarization and their relevance to corrosion. A discussion of the theoretical aspects of electrode kinetics lays a foundation for the understanding of the electrochemical nature of corrosion. Topics include mixed potential theory, reversible electrode potential, exchange current density, corrosion potential, corrosion current, and Tafel slopes. The theoretical treatment of electrochemistry in this chapter is focused on electrode kinetics, polarization behavior, mass transfer effects, and their relevance to corrosion. Analysis and solved corrosion problems are designed to understand the mechanisms of corrosion processes, learn how to control corrosion rates, and evaluate the protection strategies at the metal-solution interface [1-7]. [Pg.94]

Firstly, Mg has an electrochemistry unlike that of other conventional metals. Mg alloys thus display unique activity and passivity, as well as strange electrochemical polarization and dissolution behaviors. [Pg.615]

The huge literature on the electronic conductivity of dry conducting polymer samples will not be considered here because it has limited relevance to their electrochemistry. On the other hand, in situ methods, in which the polymer is immersed in an electrolyte solution under potential control, provide valuable insights into electron transport during electrochemical processes. It should be noted that in situ and dry conductivities of conducting polymers are not directly comparable, since concentration polarization can reduce the conductivity of electrolyte-wetted films considerably.139 Thus in situ conductivities reported for polypyrrole,140,141 poly thiophene,37 and poly aniline37 are orders of magnitude lower than dry conductivities.15... [Pg.568]

As in aqueous electrochemistry it appears that application of a potential between the two terminal (Au) electrodes leads to charge separation on the Pt film so that half of it is charged positively and half negatively8 thus establishing two individual galvanic cells. The Pt film becomes a bipolar electrode and half of it is polarized anodically while the other half is polarized cathodically. The fact that p is smaller (roughly half) than that obtained upon anodic polarization in a classical electrochemical promotion experiment can be then easily explained. [Pg.523]

Aprotic polar solvents such as those listed in Table 8.1 are widely used in electrochemistry. In solutions with such solvents the alkali metals are stable and will not dissolve under hydrogen evolution (by discharge of the proton donors) as they do in water or other protic solvents. These solvents hnd use in new types of electrochemical power sources (batteries), with hthium electrodes having high energy density. [Pg.129]

In this method the creation of defects is achieved by the application of ultrashort (10 ns) voltage pulses to the tip of an electrochemical STM arrangement. The electrochemical cell composed of the tip and the sample within a nanometer distance is small enough that the double layers may be polarized within nanoseconds. On applying positive pulses to the tip, the electrochemical oxidation reaction of the surface is driven far from equilibrium. This leads to local confinement of the reactions and to the formation of nanostructures. For every pufse applied, just one hole is created directly under the tip. This overcomes the restrictions of conventional electrochemistry (without the ultrashort pulses), where the formation of nanostructures is not possible. The holes generated in this way can then be filled with a metal such as Cu by... [Pg.681]

Abstract The flotation mechanism is discussed in the terms of corrosive electrochemistry in this chapter. In corrosion the disolution of minerals is called self-corrosion. And the reaction between reagents and minerals is treated as inhibition of corrosion. The stronger the ability of inhibiting the corrosion of minerals, the stronger the reagents react with minerals. The two major tools implied in the research of electrochemical corrosion are polarization curves and EIS (electrochemistry impedance spectrum). With these tools, pyrite, galena and sphalerite are discussed under different conditions respectively, including interactions between collector with them and the difference of oxidation of minerals in NaOH solution and in lime. And the results obtained from this research are in accordance with those from other conventional research. With this research some new information can be obtained while it is impossible for other methods. [Pg.167]

In the previous section, we demonstrated the micrometer droplet size dependence of the ET rate across a microdroplet/water interface. Beside ET reactions, interfacial mass transfer (MT) processes are also expected to depend on the droplet size. MT of ions across a polarized liquid/liquid interface have been studied by various electrochemical techniques [9-15,87], However, the techniques are disadvantageous to obtain an inside look at MT across a microspherical liquid/liquid interface, since the shape of the spherical interface varies by the change in an interfacial tension during electrochemical measurements. Direct measurements of single droplets possessing a nonpolarized liquid/liquid interface are necessary to elucidate the interfacial MT processes. On the basis of the laser trapping-electrochemistry technique, we discuss MT processes of ferrocene derivatives (FeCp-X) across a micro-oil-droplet/water interface in detail and demonstrate a droplet size dependence of the MT rate. [Pg.194]

The Physicochemical Properties of Solvents and Their Relevance to Electrochemistry. The solvent properties of electrochemical importance include the following protic character (acid-base properties), anodic and cathodic voltage limits (related to redox properties and protic character), mutual solubility of the solute and solvent, and physicochemical properties of the solvent (dielectric constant and polarity, donor or solvating properties, liquid range, viscosity, and spectroscopic properties). Practical factors also enter into the choice and include the availability and cost of the solvent, ease of purification, toxicity, and general ease of handling. [Pg.299]

A key requirement for solvents in electrochemical systems is their ability to form conductive electrolyte solutions. The possibility of dissolving salts and separating ions in solution depends on the polarity of the solvent. A primary measure for the polarity of solvents can be properties such as the dielectric constant (Table 1) or dipole moment, which influences electrostatic interactions of solvents with solutes. However, these parameters are not sufficient for an appropriate evaluation of solvents for electrochemistry. The crucial problem with their use is that the solvating power of a solvent is a fairly complex quantity which depends on... [Pg.18]

Dimethyl sulfoxide is an important solvent in nonaqueous electrochemistry due to its high polarity (dielectric constant of 47), its high donor number (29.8), and a relatively wide electrochemical window. The limiting cathodic voltages in which this solvent can be used depend on the cation used (as expected from the discussion on the cation effects on the reduction processes of the above nonaqueous solvents). Using salts of alkali metals (Li, Na, K), the cathodic limit obtained was around -1.8 — -2 V versus SCE [49], whereas with tetrabutyl ammonium, the cathodic limit was as low as -2.7 — -3 V versus SCE [49], There is evidence that in the presence of Na ions, DMSO reduction produces CH4 and H2 on plati-... [Pg.182]

Although these nonaqueous solvents are highly polar and thus may be attractive as media for nonaqueous electrochemistry, their electrochemical window is very narrow, since their cathodic potential limit is high (2.5-4 V versus Li/ Li+). Hence, their major importance remains as cathodic active materials in primary, high energy density batteries based on active metal (Li, Mg, Ca) anodes. [Pg.183]

A major part of the work with nonaqueous electrolyte solutions in modern electrochemistry relates to the field of batteries. Many important kinds of novel, high energy density batteries are based on highly reactive anodes, especially lithium, Li alloys, and lithiated carbons, in polar aprotic electrolyte systems. In fact, a great part of the literature related to nonaqueous electrolyte solutions which has appeared during the past two decades is connected to lithium batteries. These facts justify the dedication of a separate chapter in this book to the electrochemical behavior of active metal electrodes. [Pg.296]


See other pages where Electrochemistry electrochemical polarization is mentioned: [Pg.397]    [Pg.255]    [Pg.397]    [Pg.1948]    [Pg.119]    [Pg.437]    [Pg.295]    [Pg.408]    [Pg.133]    [Pg.206]    [Pg.143]    [Pg.191]    [Pg.522]    [Pg.595]    [Pg.298]    [Pg.237]    [Pg.316]    [Pg.100]    [Pg.247]    [Pg.89]    [Pg.420]    [Pg.79]    [Pg.562]    [Pg.313]    [Pg.466]    [Pg.179]    [Pg.296]    [Pg.4]    [Pg.275]    [Pg.12]    [Pg.14]    [Pg.64]    [Pg.297]   


SEARCH



Polarization electrochemical

© 2024 chempedia.info