Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemical cells continued

Shorthand Notation for Electrochemical Cells Although Figure 11.5 provides a useful picture of an electrochemical cell, it does not provide a convenient representation. A more useful representation is a shorthand, or schematic, notation that uses symbols to indicate the different phases present in the electrochemical cell, as well as the composition of each phase. A vertical slash ( ) indicates a phase boundary where a potential develops, and a comma (,) separates species in the same phase, or two phases where no potential develops. Shorthand cell notations begin with the anode and continue to the cathode. The electrochemical cell in Figure 11.5, for example, is described in shorthand notation as... [Pg.467]

Electrochemical Process. Several patents claim that ethylene oxide is produced ia good yields ia addition to faradic quantities of substantially pure hydrogen when water and ethylene react ia an electrochemical cell to form ethylene oxide and hydrogen (206—208). The only raw materials that are utilized ia the ethylene oxide formation are ethylene, water, and electrical energy. The electrolyte is regenerated in situ ie, within the electrolytic cell. The addition of oxygen to the ethylene is activated by a catalyst such as elemental silver or its compounds at the anode or its vicinity (206). The common electrolytes used are water-soluble alkah metal phosphates, borates, sulfates, or chromates at ca 22—25°C (207). The process can be either batch or continuous (see Electrochemicalprocessing). [Pg.461]

A Perkin-Elmer 5000 AAS was used, with an electrically heated quartz tube atomizer. The electrolyte is continuously conveyed by peristaltic pump. The sample solution is introduced into the loop and transported to the electrochemical cell. A constant current is applied to the electrolytic cell. The gaseous reaction products, hydrides and hydrogen, fonued at the cathode, are flowed out of the cell with the carrier stream of argon and separated from the solution in a gas-liquid separator. The hydrides are transported to an electrically heated quartz tube with argon and determined under operating conditions for hydride fonuing elements by AAS. [Pg.135]

Other Techniques Continuous methods for monitoring sulfur dioxide include electrochemical cells and infrared techniques. Sulfur trioxide can be measured by FTIR techniques. The main components of the reduced-sulfur compounds emitted, for example, from the pulp and paper industry, are hydrogen sulfide, methyl mercaptane, dimethyl sulfide and dimethyl disulfide. These can be determined separately using FTIR and gas chromatographic techniques. [Pg.1301]

A battery is a series of electrochemical cells. Electrochemical cells are devices that, whenever in use, can continuously and directly convert chemical energy into electrical energy. [Pg.114]

There are two major types of electrochemical cells primary batteries and secondaiy, or storage, batteries. Primary hatteiy construction allows for only one continuous or intermittent discharge secondary hattei y construction, on the other hand, allows for recharging as well. Since the charging process is the... [Pg.117]

The ammonium polysulfide, (NH4)2SX (with x=2 to 6) is produced in an electrochemical cell where aqueous ammonium sulfide, (NH4)2S, solution is supplied as electrolyte. The cell comprises an anode and a gas diffusion carbon cathode over which gaseous 02 is supplied in contact with the electrolyte.11 The cell operated continuously at pressures up to 60 bar. The applied potential, UWc> was 0.01 to 5 V. Pronounced electrochemical promotion behaviour was observed at Uwc values as low as 0.02 V with a current 1=0.5 A. [Pg.482]

The continuous monitoring of liquid lithium for O, C, H and H uses electrochemical cells based on Tho2-Y203 electrolytes and diffusion meters. No continuous method for N analysis is yet available . ... [Pg.330]

Hi) Specialized Analytical Methods. Analytical methods for metallic impurities are well documented and are not covered here. A major advance in the continuous monitoring of impurities in liquid sodium down to the lowest levels of detection has been the development of analysis using electrochemical cells. Oxygen analysis in sodium may be carried out using a cell of the type... [Pg.337]

The design of the 2-electrode electrochemical cells used in this work is state of the art and is based on HS Test Cell available from Hohsen Corp. of Tokyo, Japan [10]. Unless stated otherwise, these cells were tested at 32°C at different cycling rates (from C/20 to C rate) under continuous current. The electrolyte used was EC DMC (1 1), LiPF6 (1M) made by Cheil Industries, South Korea. [Pg.233]

Electrochemists have also learned how to make electrochemical cells in which one of the reactants is continuously supplied from outside the cell rather than contained within. One example is the zinc-air cell in which particles of zinc... [Pg.166]

In each of the SILVER II cells, a pair of electrodes (anode and cathode) is housed in a compartment within the cell. A semipermeable membrane is placed between the electrodes. The membrane maintains electrical continuity between the electrodes and prevents mixing of the anolyte and catholyte solutions. The electrochemical cells operate at 190°F and essentially at-... [Pg.59]

Let us continue with the example of copper ions in contact with copper metal and zinc ions in contact with zinc metal. This combination is usually referred to as the Darnell cell or zinc/copper couple(Fig. 6.5a). For this electrochemical cell the reduction and oxidation processes responsible for the overall reaction are separated in space one half reaction taking place in one electrode compartment and the other takes place in the other compartment. [Pg.228]

Mauritz and Gray analyzed the IR continuous absorption of hydrated Na OH - and K OH -imbibed Nafion sulfonate membranes for the purpose of correlating this phenomenon to the current efficiency (cation transference number) of chlor-alkali electrochemical cells.In this case, the similar issue of OH ( defect proton ) conductivity is important. A distinct continuous absorption appeared in the spec-... [Pg.331]

Cross coupling between an aryl halide and an activated alkyl halide, catalysed by the nickel system, is achieved by controlling the rate of addition of the alkyl halide to the reaction mixture. When the aryl halide is present in excess, it reacts preferentially with the Ni(o) intermediate whereas the Ni(l) intermediate reacts more rapidly with an activated alkyl halide. Thus continuous slow addition of the alkyl halide to the electrochemical cell already charged with the aryl halide ensures that the alkyl-aryl coupled compound becomes the major product. Activated alkyl halides include benzyl chloride, a-chloroketones, a-chloroesters and amides, a-chloro-nitriles and vinyl chlorides [202, 203, 204], Asymmetric induction during the coupling step occurs with over 90 % distereomeric excess from reactions with amides such as 62, derived from enantiomerically pure (-)-ephedrine, even when 62 is a mixture of diastereoisomcrs prepared from a racemic a-chloroacid. Metiha-nolysis of the amide product affords the chiral ester 63 and chiral ephedrine is recoverable [205]. [Pg.140]

The transfer of electrons sets up an electric current—a flow of electric charges. This flow is vital in electrochemical reactions. As the reaction continues, electrons are injected into the process and then drawn off. Chemists carry out electrochemical reactions within a device known as an electrochemical cell, with electrical conductors called electrodes to inject and withdraw electrons. [Pg.138]


See other pages where Electrochemical cells continued is mentioned: [Pg.348]    [Pg.348]    [Pg.3890]    [Pg.348]    [Pg.348]    [Pg.3890]    [Pg.191]    [Pg.90]    [Pg.2435]    [Pg.317]    [Pg.951]    [Pg.338]    [Pg.229]    [Pg.61]    [Pg.226]    [Pg.457]    [Pg.240]    [Pg.21]    [Pg.110]    [Pg.167]    [Pg.232]    [Pg.155]    [Pg.3]    [Pg.244]    [Pg.79]    [Pg.226]    [Pg.224]    [Pg.297]    [Pg.524]    [Pg.294]    [Pg.410]    [Pg.341]    [Pg.104]   


SEARCH



Electrochemical cell

Electrochemical cells (continued galvanic

Electrochemical cells (continued primary

© 2024 chempedia.info