Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemical cell ideal

Chapters 7 to 9 apply the thermodynamic relationships to mixtures, to phase equilibria, and to chemical equilibrium. In Chapter 7, both nonelectrolyte and electrolyte solutions are described, including the properties of ideal mixtures. The Debye-Hiickel theory is developed and applied to the electrolyte solutions. Thermal properties and osmotic pressure are also described. In Chapter 8, the principles of phase equilibria of pure substances and of mixtures are presented. The phase rule, Clapeyron equation, and phase diagrams are used extensively in the description of representative systems. Chapter 9 uses thermodynamics to describe chemical equilibrium. The equilibrium constant and its relationship to pressure, temperature, and activity is developed, as are the basic equations that apply to electrochemical cells. Examples are given that demonstrate the use of thermodynamics in predicting equilibrium conditions and cell voltages. [Pg.686]

Reference electrodes for non-aqueous solvents are always troublesome because the necessary salt bridge may add considerable errors by undefined junction potentials. Leakage of components of the reference compartment, water in particular, into the working electrode compartment is a further problem. Whenever electrochemical cells of very small dimensions have to be designed, the construction of a suitable reference electrode system may be very difficult. Thus, an ideal reference electrode would be a simple wire introduced into the test cell. The usefulness of redox modified electrodes as reference electrodes in this respect has been studied in some detail... [Pg.80]

This section considers only those techniques employed via the emersion approach as being the closest to in situ observation. However, as has been discussed briefly in other sections, the use of the emersion approach is still controversial and a source of much debate. Thus, in order to employ UHV-based techniques via emersion the electrode has to be transferred from the electrochemical cell to the vacuum chamber. Ideally, there should be no... [Pg.225]

With the introduction of modern electronics, inexpensive computers, and new materials there is a resurgence of voltammetric techniques in various branches of science as evident in hundreds of new publications. Now, voltammetry can be performed with a nano-electrode for the detection of single molecular events [1], similar electrodes can be used to monitor the activity of neurotransmitter in a single living cell in subnanoliter volume electrochemical cell [2], measurement of fast electron transfer kinetics, trace metal analysis, etc. Voltammetric sensors are now commonplace in gas sensors (home CO sensor), biomedical sensors (blood glucose meter), and detectors for liquid chromatography. Voltammetric sensors appear to be an ideal candidate for miniaturization and mass production. This is evident in the development of lab-on-chip... [Pg.662]

R is the ideal gas constant, T is the Kelvin temperature, n is the number of electrons transferred, F is Faraday s constant, and Q is the activity quotient. The second form, involving the log Q, is the more useful form. If you know the cell reaction, the concentrations of ions, and the E°ell, then you can calculate the actual cell potential. Another useful application of the Nernst equation is in the calculation of the concentration of one of the reactants from cell potential measurements. Knowing the actual cell potential and the E°ell, allows you to calculate Q, the activity quotient. Knowing Q and all but one of the concentrations, allows you to calculate the unknown concentration. Another application of the Nernst equation is concentration cells. A concentration cell is an electrochemical cell in which the same chemical species are used in both cell compartments, but differing in concentration. Because the half reactions are the same, the E°ell = 0.00 V. Then simply substituting the appropriate concentrations into the activity quotient allows calculation of the actual cell potential. [Pg.272]

The electrodes are the typical and most important components of an electrochemical cell - especially the working electrode - which usually decide about the success of an electroorganic synthesis. Electrode materials need a sufficient electronic conductivity and corrosion stability as well as, ideally, a selective electrocat-alytic activity which favors the desired reaction. The overvoltages for undesired reactions should be high, for example, for the decomposition of the solvent water by anodic oxygen or cathodic hydrogen evolution. But, additionally, the behavior of electrodes can show unexpected and incomprehensible effects, which will cause difficulties to attain reproducible results. [Pg.39]

A solid electrolyte is an ionic conductor and an electronic insulator. Ideally, it conducts only one ionic species. Aside from a few specialty applications in the electronics industry, solid electrolytes are used almost exclusively in electrochemical cells. They are particularly useful where the reactants of the electrochemical cell are either gaseous or liquid however, they may be used as separators where one or both of the reactants are solids. Used as a separator, a solid electrolyte permits selection of two liquid or elastomer electrolytes each of which is matched to only the solid reactant with which it makes contact. [Pg.43]

Electrochemical cells are of two types power cells and sensors. In an ideal power cell, the ionic current through the electrolyte inside the cell matches an electronic current through an external load. The solid electrolyte is in the form of a membrane of thickness L and area A that separates electronically the two electrodes of the cell. Any internal electronic current across the electrolyte reduces the power output. The internal resistance to the ionic current is... [Pg.43]

A fuel cell is an electrochemical conversion device. It produces electricity from fuel and an oxidant, which react in the presence of an electrolyte. The reactants flow into the cell, and the reaction products flow out of it, while the electrolyte remains within it. Fuel cells are different from electrochemical cell batteries in that they consume reactant, which must be replenished, whereas batteries store electrical energy chemically in a closed system. The chemical energy of the fuel is released in the form of an electrical energy instead of heat when the fuel is oxidized in an ideal electrochemical cell. Energy conversion by a fuel cell depends largely... [Pg.224]

The electrolyte is the heart of any fuel cell. Ideally, this component effectively separates the anode and cathode gases and/or liquids and mediates the electrochemical reaction occurring at the electrodes through conducting a specific ion at very high rates during the operation of the fuel cell. In other words,... [Pg.398]

Define the following terms used in Section 6.3 (a) electrochemical cell, (b) ideally nonpolarizable and polarizable interfaces, (c) relative electrode potential, (d) outer potential, (e) inner potential, (1) surface potential, (g) image forces, (h) Coulombic forces, (i) electrochemical potential, (j) chemical potential, (k) electron work function, (1) just outside the metal, and (m) absolute potential. (Gamboa-Aldeco)... [Pg.299]

Rule 1. The first rule is the requirement of the closed electrical circuit. This means that at least two electrodes must be present in the electrochemical cell. From a purely electrical point of view, it means that we have a sensor electrode (the working electrode) and a signal return electrode (often called the auxiliary electrode). This requirement does not necessarily mean that a DC electrical current will flow in a closed circuit. Obviously, if we consider an ideal capacitor C in series with a resistor R (Appendix C), a DC voltage will appear across the capacitor, but only as a transient DC current will not flow through it. On the other hand, if an AC voltage is applied to the cell, a continuous displacement charging current will flow. [Pg.100]

The potential difference of an ideal reversible electrochemical cell in open circuit is 0.965 V at 25 °C and 1 atm. The open-circuit potential was measured... [Pg.383]

In an ideal electrochemical cell, the Gibbs energy of reaction is converted to electrical energy, then the intrinsic maximum energy conversion efficiency of an electrochemical cell is... [Pg.540]

Fig. 17 shows how such an ideal op amp can be configured as a potentiostat and connected to an electrochemical cell to study kinetics. First consider the electrochemical cell in the schematic. Unlike the cells discussed above, this cell has three electrodes. The working elecrode (WE) represents the interface of inter-... [Pg.30]


See other pages where Electrochemical cell ideal is mentioned: [Pg.40]    [Pg.1798]    [Pg.112]    [Pg.40]    [Pg.1798]    [Pg.112]    [Pg.462]    [Pg.88]    [Pg.295]    [Pg.662]    [Pg.444]    [Pg.77]    [Pg.657]    [Pg.432]    [Pg.311]    [Pg.249]    [Pg.361]    [Pg.63]    [Pg.295]    [Pg.32]    [Pg.143]    [Pg.868]    [Pg.88]    [Pg.157]    [Pg.262]    [Pg.272]    [Pg.17]    [Pg.250]    [Pg.3]    [Pg.576]   
See also in sourсe #XX -- [ Pg.736 ]




SEARCH



Electrochemical cell

© 2024 chempedia.info