Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemical cell diffusion limited

CA in which many filled cells execute a random walk but never interact with one another, cannot give rise to stable pattern formation since the cells will move at random forever. However, if cells can interact when they meet, so that one diffusing cell is allowed to stick to another, stable structures can be created. These structures illustrate the modeling of diffusion-limited aggregation (DLA), which is of interest in studies of crystal formation, precipitation, and the electrochemical formation of solids. [Pg.190]

Examination of the behaviour of a dilute solution of the substrate at a small electrode is a preliminary step towards electrochemical transformation of an organic compound. The electrode potential is swept in a linear fashion and the current recorded. This experiment shows the potential range where the substrate is electroactive and information about the mechanism of the electrochemical process can be deduced from the shape of the voltammetric response curve [44]. Substrate concentrations of the order of 10 molar are used with electrodes of area 0.2 cm or less and a supporting electrolyte concentration around 0.1 molar. As the electrode potential is swept through the electroactive region, a current response of the order of microamperes is seen. The response rises and eventually reaches a maximum value. At such low substrate concentration, the rate of the surface electron transfer process eventually becomes limited by the rate of diffusion of substrate towards the electrode. The counter electrode is placed in the same reaction vessel. At these low concentrations, products formed at the counter electrode do not interfere with the working electrode process. The potential of the working electrode is controlled relative to a reference electrode. For most work, even in aprotic solvents, the reference electrode is the aqueous saturated calomel electrode. Quoted reaction potentials then include the liquid junction potential. A reference electrode, which uses the same solvent as the main electrochemical cell, is used when mechanistic conclusions are to be drawn from the experimental results. [Pg.15]

A system underpinned by commercially made screen-printed electrochemical cells was described by Palmisano et al. [19]. The cells were converted into biosensors for lactate in milk and yoghurt by addition of an electrochemically polymerised barrier to interference and a layer composed of lactate oxidase, glutaraldehyde and BSA. These steps appeared to have been carried out by hand. As there was no outer diffusion-limiting membrane, the linear range of the sensors was quite small (0-0.7 mM). They were incorporated into a FIA with a microdialysis unit based on a planar membrane and a buffer reservoir (earlier work used a microdialysis fibre with a platinum electrode [29]. The concentration of lactate was determined in various milks (0.27-1.64 mM), and in raw milk (c. 0.5-0.9 mM) left to degrade on the laboratory bench. The recovery of the microdialysis unit, 2.6%, implied that the sensor had an ability to return measurable currents for very low concentrations of lactate. A further implication is that the electro-polymerised layer was very effective at preventing interference. [Pg.672]

Gas sensors usually incorporate a conventional ion-selective electrode surrounded by a thin film of an intermediate electrolyte solution and enclosed by a gas-permeable membrane. An internal reference electrode is usually included, so that the sensor represents a complete electrochemical cell. The gas (of interest) in the sample solution diffuses through the membrane and comes to equilibrium with the internal electrolyte solution. In the internal compartment, between the membrane and the ion-selective electrode, the gas undergoes a chemical reaction, consuming or forming an ion to be detected by the ion-selective electrode. (Protonation equilibria in conjunction with a pH electrode are most common.) Since the local activity of this ion is proportional to the amount of gas dissolved in the sample, the electrode response is directly related to the concentration of the gas in the sample. The response is usually linear over a range of typically four orders of magnitude the upper limit is determined by the concentration of the inner electrolyte solution. The permeable membrane is the key to the electrode s gas selectivity. Two types of polymeric material, microporous and homogeneous, are used to form the... [Pg.224]

If a resistor is added in series with the parallel RC circuit, the overall circuit becomes the well-known Randles cell, as shown in Figure 4.11a. This is a model representing a polarizable electrode (or an irreversible electrode process), based on the assumptions that a diffusion limitation does not exist, and that a simple single-step electrochemical reaction takes place on the electrode surface. Thus, the Faradaic impedance can be simplified to a resistance, called the charge-transfer resistance. The single-step electrochemical reaction is described as... [Pg.154]

Unlike the RDE technique, which is quite popular for characterizing catalyst activities, the gas diffusion electrode (GDE) technique is not commonly used by fuel cell researchers in an electrochemical half-cell configuration. The fabrication of a house-made GDE is similar to the preparation of a membrane electrode assembly (MEA). In this fabrication, Nation membrane disks are first hot-washed successively in nitric acid, sulphuric acid, hydrogen peroxide, and ultra-pure water. The membranes are then coated with a very thin active layer and hot-pressed onto the gas diffusion layer (GDL) to obtain a Nation membrane assembly. The GDL (e.g., Toray paper) is very thin and porous, and thus the associated diffusion limitation is small enough to be ignored, which makes it possible to study the specific kinetic behaviour of the active layer [6],... [Pg.195]

Consider the electrochemical oxidation of a crucial reaction in many types of fuel cells. The solubility of in aqueous solutions is rather low, (of the order of O.I mM), and the diffusion coefficient is D = 1.6x10 cm/s. The diffusion limited current density for this reaction, calculated from Eq. IK is shown in Fig. 3K, as a function of... [Pg.191]

Amperometric sensing of gases is based on solid ion-conducting materials, as described for potentiometric gas sensors. Solid-state amperometric gas sensors measure the limiting current (ij) flowing across the electrochemical cell upon application of a fixed voltage so that the rate of electrode reaction is controlled by the gas transport across the cell. The diffusion barrier consists of small-hole porous ceramics. The limiting current satisfies the relationship ... [Pg.204]

Several advantages of the inlaid disk-shaped tips (e.g., well-defined thin-layer geometry and high feedback at short tip/substrate distances) make them most useful for SECM measurements. However, the preparation of submicrometer-sized disk-shaped tips is difficult, and some applications may require nondisk microprobes [e.g., conical tips are useful for penetrating thin polymer films (18)]. Two aspects of the related theory are the calculation of the current-distance curves for a specific tip geometry and the evaluation of the UME shape. Approximate expressions were obtained for the steady-state current in a thin-layer cell formed by two electrodes, for example, one a plane and the second a cone or hemisphere (19). It was shown that the normalized steady-state, diffusion-limited current, as a function of the normalized separation for thin-layer electrochemical cells, is fairly sensitive to the geometry of the electrodes. However, the thin-layer theory does not describe accurately the steady-state current between a small disk tip and a planar substrate because the tip steady-state current iT,co was not included in the approximate model (19). [Pg.162]

The cell in Figure 17.1.2a is designed for experiments involving semi-infinite linear diffusion of the electroactive species to the electrode surface (6). It is normally used for experiments in which one applies large-amplitude steps in order to carry out electrolysis in the diffusion-limited region, and one then records the change in absorbance, si, versus time. From an electrochemical standpoint, the result is the same as that of the Cottrell experiment described in Section 5.2.1. [Pg.682]


See other pages where Electrochemical cell diffusion limited is mentioned: [Pg.549]    [Pg.188]    [Pg.375]    [Pg.520]    [Pg.734]    [Pg.805]    [Pg.400]    [Pg.463]    [Pg.522]    [Pg.194]    [Pg.525]    [Pg.250]    [Pg.556]    [Pg.573]    [Pg.43]    [Pg.141]    [Pg.60]    [Pg.615]    [Pg.198]    [Pg.770]    [Pg.668]    [Pg.10]    [Pg.280]    [Pg.491]    [Pg.474]    [Pg.141]    [Pg.365]    [Pg.737]    [Pg.810]    [Pg.326]    [Pg.1948]    [Pg.81]    [Pg.263]    [Pg.180]    [Pg.342]    [Pg.100]    [Pg.46]    [Pg.161]    [Pg.203]   
See also in sourсe #XX -- [ Pg.615 , Pg.736 , Pg.738 ]




SEARCH



Diffusion cell

Diffusion limit

Diffusion limitation

Diffusion limiting

Diffusive limit

Electrochemical cell

Electrochemical cell diffusion limitations

Limiting diffusivity

© 2024 chempedia.info