Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrical polypyrroles

Functionalized conducting monomers can be deposited on electrode surfaces aiming for covalent attachment or entrapment of sensor components. Electrically conductive polymers (qv), eg, polypyrrole, polyaniline [25233-30-17, and polythiophene/23 2JJ-J4-j5y, can be formed at the anode by electrochemical polymerization. For integration of bioselective compounds or redox polymers into conductive polymers, functionalization of conductive polymer films, whether before or after polymerization, is essential. In Figure 7, a schematic representation of an amperomethc biosensor where the enzyme is covalendy bound to a functionalized conductive polymer, eg, P-amino (polypyrrole) or poly[A/-(4-aminophenyl)-2,2 -dithienyl]pyrrole, is shown. Entrapment of ferrocene-modified GOD within polypyrrole is shown in Figure 7. [Pg.46]

Polypyrroles. Highly stable, flexible films of polypyrrole ate obtained by electrolytic oxidation of the appropriate pyrrole monomers (46). The films are not affected by air and can be heated to 250°C with Htde effect. It is beheved that the pyrrole units remain intact and that linking is by the a-carbons. Copolymerization of pyrrole with /V-methy1pyrro1e yields compositions of varying electrical conductivity, depending on the monomer ratio. Conductivities as high as 10 /(n-m) have been reported (47) (see Electrically conductive polymers). [Pg.359]

Common conductive polymers are poly acetylene, polyphenylene, poly-(phenylene sulfide), polypyrrole, and polyvinylcarba2ole (123) (see Electrically conductive polymers). A static-dissipative polymer based on a polyether copolymer has been aimounced (124). In general, electroconductive polymers have proven to be expensive and difficult to process. In most cases they are blended with another polymer to improve the processibiUty. Conductive polymers have met with limited commercial success. [Pg.296]

Although polyacetylene has served as an excellent prototype for understanding the chemistry and physics of electrical conductivity in organic polymers, its instabiUty in both the neutral and doped forms precludes any useful appHcation. In contrast to poly acetylene, both polyaniline and polypyrrole are significantly more stable as electrical conductors. When addressing polymer stabiUty it is necessary to know the environmental conditions to which it will be exposed these conditions can vary quite widely. For example, many of the electrode appHcations require long-term chemical and electrochemical stabihty at room temperature while the polymer is immersed in electrolyte. Aerospace appHcations, on the other hand, can have quite severe stabiHty restrictions with testing carried out at elevated temperatures and humidities. [Pg.43]

Figure 25. Movement rate of bilayer devices (along an angle of 90°) with different dimensions (different polypyrrole weights) versus applied electrical current per mass unit (mA mg ). (Reprinted fromT. F. Otero and J. M. Sansinana, Bilayerdimensions and movement of artificial muscles. Bioelectrochem. Bioener-genetics 47, 117, 1997, Fig. 4. Copyright 1997. Reprinted with permission from Elsevier Science.)... Figure 25. Movement rate of bilayer devices (along an angle of 90°) with different dimensions (different polypyrrole weights) versus applied electrical current per mass unit (mA mg ). (Reprinted fromT. F. Otero and J. M. Sansinana, Bilayerdimensions and movement of artificial muscles. Bioelectrochem. Bioener-genetics 47, 117, 1997, Fig. 4. Copyright 1997. Reprinted with permission from Elsevier Science.)...
At dusk the window becomes lighter. When the polypyrrole film is completely reduced and the oxide is fully oxidized and darkening continues, the current of the photocell decreases at it and the electric light in the room is switched on. The intensity of the electric current sent to the lamp is increased in such a way that the luminosity in the room remains constant at all times. In cars or for other applications, the device can work automatically or by hand, darkening all the windows when the car is parked on a sunny day. [Pg.367]

Figure 51. Arrhenius plot of ln 1/(3 [ Q t)ldt2]) from data corresponding to Fig. 54. The conformational energy consumed per mole of polymeric segments in the absence of any external electric field (AH) can be obtained from the slope. (Reprinted from T. F. Otero and H.-J. Grande, Reversible 2D to 3D electrode transition in polypyrrole films. Colloid Surf. A. 134, 85, 1998, Figs. 4-9. Copyright 1998. Reproduced with kind permission of Elsevier Science-NL, Sara Burgerhartstraat 25, 1055 Amsterdam, The Netherlands.)... Figure 51. Arrhenius plot of ln 1/(3 [ Q t)ldt2]) from data corresponding to Fig. 54. The conformational energy consumed per mole of polymeric segments in the absence of any external electric field (AH) can be obtained from the slope. (Reprinted from T. F. Otero and H.-J. Grande, Reversible 2D to 3D electrode transition in polypyrrole films. Colloid Surf. A. 134, 85, 1998, Figs. 4-9. Copyright 1998. Reproduced with kind permission of Elsevier Science-NL, Sara Burgerhartstraat 25, 1055 Amsterdam, The Netherlands.)...
There are several reports of Ag nanocomposites with conducting polymers like polyaniline [38] and polypyrrole [39]. However, electrical conducting properties of green metal - starch... [Pg.136]

The concept of electrochemical intercalation/insertion of guest ions into the host material is further used in connection with redox processes in electronically conductive polymers (polyacetylene, polypyrrole, etc., see below). The product of the electrochemical insertion reaction should also be an electrical conductor. The latter condition is sometimes by-passed, in systems where the non-conducting host material (e.g. fluorographite) is finely mixed with a conductive binder. All the mentioned host materials (graphite, oxides, sulphides, polymers, fluorographite) are studied as prospective cathodic materials for Li batteries. [Pg.329]

Burgmayer and Murray [40] reported electrically controlled resistance to the transport of ions across polypyrrole membrane. The membrane was formed around a folded minigrid sheet by the anodic polymerization of pyrrole. The ionic resistance, measured by impedance, in 1.0 M aqueous KC1 solution was much higher under the neutral (reduced) state of the polymers than under the positively charged (oxidized) state. The redox state of polypyrrole was electrochemically controlled this phenomenon was termed an ion gate, since the resistance was varied from low to high and vice versa by stepwise voltage application. [Pg.577]

X. Zhang, J. Zhang, R. Wang, T. Zhu, and Z. Liu, Surfactant-directed polypyrrole/CNT nanocables synthesis, characterization, and enhanced electrical properties. ChemPhysChem 5, 998—1002 (2004). [Pg.524]

The electropolymerisation of the electrically conducting polymers thiophene (mentioned briefly aready in Chapter 5) and polypyrolle are thought to be produced by a scheme to that given in Fig. 6.22. (The scheme shows polypyrrole formation. Polythiophene is similar in that NH is replaced by S.)... [Pg.261]

Polypyrrol is a polymeric support that can be used in immobilization of ONDs to surfaces. The generation of polypyrrol films can be by electrochemical co-polymerization of pyrrole and pyrrole-modified ONDs onto platinum electrodes. The polymer forms a black and insoluble film that is electrically conducting and whose thickness depends on the current used during the polymerization process (Fig. 14). The final surface density of the OND can be controlled by the ratio of pyrrole/OND being polymerized [53-55]. [Pg.93]

In potentiometric sensors, an electrical potential between the working electrode and a reference electrode is measured at zero current conditions in a solution containing ions that exchange with the surface. The first potentiometric MIP sensor was prepared in 1992 by Vinokurov (1992). The substrate-selective polyaniline electrode was electrosynthesized with polypyrrole, polyaniline, and aniline-p-aminophenol copolymers. The development of an MIP-based potentiometric sensor was reported in 1995 by Hutchins and Bachas (1995). This potentiometric sensor has high selectivity for nitrite with a low detection limit of (2 + l)x 10 M (Fig. 15.10). [Pg.419]

Sato K, Yamaura M, Hagiwara T, Murata K, Tokumoto M (1991) Study on the electrical conduction mechanism of polypyrrole films. Synth Met 40 35 8... [Pg.125]

Electrically conducting polymer particles such as polypyrrole and polyaniline could also be prepared by dispersion polymerization in aqueous ethanol (31). The oxidation polymerization of pyrrole and aniline has been carried out at the electrode surfaces so far and formed a thin film of conducting polymer. On the other hand, polypyrrole precipitates as particles when an oxidizing reagent is added to a pyrrole dissolved ethanol solution, which contains a water-soluble stabilizer. In this way electrically conducting polymer particles are obtained and, in order to add more function to them, incorporation of functional groups, such as aldehyde to the surface, and silicone treatment were invented (32). [Pg.621]

Fig. 122. Polymerization of pyrrole monomer in a preformed ferric stearate multilayer film (black dots represent electrically conducting polypyrrole) [764]... Fig. 122. Polymerization of pyrrole monomer in a preformed ferric stearate multilayer film (black dots represent electrically conducting polypyrrole) [764]...
Heterojunctions of polythiophene with polypyrrole [195] and Cds [196] of the Schottky type were constructed and tested. The height of the barrier was 0.8 eV. The photogeneration of the charge carrier takes place in the depletion layer of the thiophene with consequent separation in the barrier electric field. [Pg.41]

Electrochemical doping of insulating polymers has been attempted for polyacetylene, polypyrrole, poly-A/-vinyl carbazole and phthalocyaninato-poly-siloxane. Significantly, Shirota et al. [91] claim to have achieved the first synthesis of electrically conducting poly(vinyl ferrocene) by the method of electrochemical deposition (ECD) [91]. This is based on the insolubilization of doped polymers from a solution of neutral polymers. A typical procedure applied [91] for polyvinyl ferrocene is to dissolve the polymer in dichlorometh-ane and oxidize it anodically with Ag/Ag+ reference electrode under selective conditions. The modified polymer [91] (Fig. 28) is a partially oxidized mixed valence salt containing ferrocene and ferrocenium ion pendant groups with C104 as the counter anion. [Pg.110]


See other pages where Electrical polypyrroles is mentioned: [Pg.43]    [Pg.43]    [Pg.45]    [Pg.45]    [Pg.387]    [Pg.127]    [Pg.326]    [Pg.361]    [Pg.364]    [Pg.392]    [Pg.584]    [Pg.34]    [Pg.56]    [Pg.135]    [Pg.333]    [Pg.338]    [Pg.340]    [Pg.305]    [Pg.470]    [Pg.51]    [Pg.7]    [Pg.306]    [Pg.183]    [Pg.429]    [Pg.444]    [Pg.680]    [Pg.282]    [Pg.148]    [Pg.159]    [Pg.259]    [Pg.306]   
See also in sourсe #XX -- [ Pg.205 ]




SEARCH



Electrical conductivity polypyrroles

Electrical properties polypyrrole conductivity

Electrically polypyrrole

Electrically polypyrrole

Polypyrrol

Polypyrrole

Polypyrrole electrical conductivity

Polypyrrole electrically conductive

Polypyrroles

Polypyrroles, properties electrical

Polypyrrolic

The First Electrically Conductive Poly(Heterocycle) Polypyrrole

© 2024 chempedia.info