Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrical outer-Helmholtz plane

IHP) (the Helmholtz condenser formula is used in connection with it), located at the surface of the layer of Stem adsorbed ions, and an outer Helmholtz plane (OHP), located on the plane of centers of the next layer of ions marking the beginning of the diffuse layer. These planes, marked IHP and OHP in Fig. V-3 are merely planes of average electrical property the actual local potentials, if they could be measured, must vary wildly between locations where there is an adsorbed ion and places where only water resides on the surface. For liquid surfaces, discussed in Section V-7C, the interface will not be smooth due to thermal waves (Section IV-3). Sweeney and co-workers applied gradient theory (see Chapter III) to model the electric double layer and interfacial tension of a hydrocarbon-aqueous electrolyte interface [27]. [Pg.179]

Fig. 1. The structure of the electrical double layer where Q represents the solvent CD, specifically adsorbed anions 0, anions and (D, cations. The inner Helmholtz plane (IHP) is the center of specifically adsorbed ions. The outer Helmholtz plane (OHP) is the closest point of approach for solvated cations or molecules. O, the corresponding electric potential across the double layer, is also shown. Fig. 1. The structure of the electrical double layer where Q represents the solvent CD, specifically adsorbed anions 0, anions and (D, cations. The inner Helmholtz plane (IHP) is the center of specifically adsorbed ions. The outer Helmholtz plane (OHP) is the closest point of approach for solvated cations or molecules. O, the corresponding electric potential across the double layer, is also shown.
FIG. 10 Schematic representation of the proposed surface model (a) the concentration and (b) the electrical potential profiles at the interface of the membrane and aqueous sample solution, x = 0 and 0 are the positions of ions in the planes of closest approach (outer Helmholtz planes) from the aqueous and membrane sides, respectively. (From Ref. 17.)... [Pg.456]

Fig. 4.1 Structure of the electric double layer and electric potential distribution at (A) a metal-electrolyte solution interface, (B) a semiconductor-electrolyte solution interface and (C) an interface of two immiscible electrolyte solutions (ITIES) in the absence of specific adsorption. The region between the electrode and the outer Helmholtz plane (OHP, at the distance jc2 from the electrode) contains a layer of oriented solvent molecules while in the Verwey and Niessen model of ITIES (C) this layer is absent... Fig. 4.1 Structure of the electric double layer and electric potential distribution at (A) a metal-electrolyte solution interface, (B) a semiconductor-electrolyte solution interface and (C) an interface of two immiscible electrolyte solutions (ITIES) in the absence of specific adsorption. The region between the electrode and the outer Helmholtz plane (OHP, at the distance jc2 from the electrode) contains a layer of oriented solvent molecules while in the Verwey and Niessen model of ITIES (C) this layer is absent...
A rigorous solution of this problem was attempted, for example, in the hard sphere approximation by D. Henderson, L. Blum, and others. Here the discussion will be limited to the classical Gouy-Chapman theory, describing conditions between the bulk of the solution and the outer Helmholtz plane and considering the ions as point charges and the solvent as a structureless dielectric of permittivity e. The inner electrical potential 0(1) of the bulk of the solution will be taken as zero and the potential in the outer Helmholtz plane will be denoted as 02. The space charge in the diffuse layer is given by the Poisson equation... [Pg.225]

Consider a solid surface in contact with a dilute electrolyte solution. The plane where motion of the liquid can commence is parallel to the outer Helmholtz plane but shifted in the direction into the bulk of the solution. The electric potential in this plane with respect to the solution is termed the electrokinetic potential ( = 02 ). [Pg.253]

If the electrolyte components can react chemically, it often occurs that, in the absence of current flow, they are in chemical equilibrium, while their formation or consumption during the electrode process results in a chemical reaction leading to renewal of equilibrium. Electroactive substances mostly enter the charge transfer reaction when they approach the electrode to a distance roughly equal to that of the outer Helmholtz plane (Section 5.3.1). It is, however, sometimes necessary that they first be adsorbed. Similarly, adsorption of the products of the electrode reaction affects the electrode reaction and often retards it. Sometimes, the electroinactive components of the solution are also adsorbed, leading to a change in the structure of the electrical double layer which makes the approach of the electroactive substances to the electrode easier or more difficult. Electroactive substances can also be formed through surface reactions of the adsorbed substances. Crystallization processes can also play a role in processes connected with the formation of the solid phase, e.g. in the cathodic deposition of metals. [Pg.261]

The value of the electric potential affecting the activation enthalpy of the electrode reaction is decreased by the difference in the electrical potential between the outer Helmholtz plane and the bulk of the solution, 2, so that the activation energies of the electrode reactions are not given by Eqs (5.2.10) and (5.2.18), but rather by the equations... [Pg.286]

The Frumkin theory of the effect of the electrical double layer on the rate of the electrode reaction is a gross simplification. For example, the electrode reaction does not occur only at the outer Helmholtz plane but also at a somewhat greater distance from the electrode surface. More detailed considerations indicate, however, that Eq. (5.3.20) can still be used to describe the effect of the electrical double layer as a good approximation. [Pg.289]

The electric field or ionic term corresponds to an ideal parallel-plate capacitor, with potential drop g (ion) = qMd/4ire. Itincludes a contribution from the polarizability of the electrolyte, since the dielectric constant is included in the expression. The distance d between the layers of charge is often taken to be from the outer Helmholtz plane (distance of closest approach of ions in solution to the metal in the absence of specific adsorption) to the position of the image charge in the metal a model for the metal is required to define this position properly. The capacitance per unit area of the ideal capacitor is a constant, e/Aird, often written as Klon. The contribution to 1/C is 1 /Klon this term is much less important in the sum (larger capacitance) than the other two contributions.2... [Pg.14]

Fig. 2. Schematic diagram of the tunnel gap between sample and tip, with the extension of the electric double layers indicated by the outer Helmholtz plane(OHP). (a) No tip interaction at large tip-sample separation, (b) Overlap of the electric double layers at a distance s = 0.6 nm, which can be achieved by conventional imaging conditions (e.g., Uj = 50 mV It = 2 nA Rt = 2.5 x 107 Q). Inset Dependence of the tunnel gap s on the tunnel resistance Rt for a tunnel barrier of 1.5 eV. Fig. 2. Schematic diagram of the tunnel gap between sample and tip, with the extension of the electric double layers indicated by the outer Helmholtz plane(OHP). (a) No tip interaction at large tip-sample separation, (b) Overlap of the electric double layers at a distance s = 0.6 nm, which can be achieved by conventional imaging conditions (e.g., Uj = 50 mV It = 2 nA Rt = 2.5 x 107 Q). Inset Dependence of the tunnel gap s on the tunnel resistance Rt for a tunnel barrier of 1.5 eV.
The electrified interface is generally referred to as the electric double layer (EDL). This name originates from the simple parallel plate capacitor model of the interface attributed to Helmholtz.1,9 In this model, the charge on the surface of the electrode is balanced by a plane of charge (in the form of nonspecifically adsorbed ions) equal in magnitude, but opposite in sign, in the solution. These ions have only a coulombic interaction with the electrode surface, and the plane they form is called the outer Helmholtz plane (OHP). Helmholtz s model assumes a linear variation of potential from the electrode to the OHP. The bulk solution begins immediately beyond the OHP and is constant in potential (see Fig. 1). [Pg.308]

For a long time, the electric double layer was compared to a capacitor with two plates, one of which was the charged metal and the other, the ions in the solution. In the absence of specific adsorption, the two plates were viewed as separated only by a layer of solvent. This model was later modified by Stem, who took into account the existence of the diffuse layer. He combined both concepts, postulating that the double layer consists of a rigid part called the inner—or Helmholtz—layer, and a diffuse layer of ions extending from the outer Helmholtz plane into the bulk of the solution. Accordingly, the potential drop between the metal and the bulk consists of two parts ... [Pg.3]

Fig. 5-8. An interfadal double layer model (triple-layer model) SS = solid surface OHP = outer Helmholtz plane inner potential tt z excess charge <2h = distance from the solid surface to the closest approach of hydrated ions (Helmluritz layer thickness) C = electric capacity. Fig. 5-8. An interfadal double layer model (triple-layer model) SS = solid surface OHP = outer Helmholtz plane inner potential tt z excess charge <2h = distance from the solid surface to the closest approach of hydrated ions (Helmluritz layer thickness) C = electric capacity.
Figure 3.18 Formation of the electrical double layer of a surface in solution, showing the inner Helmholtz plane (IHP) and outer Helmholtz plane (OHP). Reprinted, by permission, from B. D. Craig, Fundamental Aspects of Corrosion Films in Corrosion Science, p. 4. Copyright 1991 by Plenum Press. Figure 3.18 Formation of the electrical double layer of a surface in solution, showing the inner Helmholtz plane (IHP) and outer Helmholtz plane (OHP). Reprinted, by permission, from B. D. Craig, Fundamental Aspects of Corrosion Films in Corrosion Science, p. 4. Copyright 1991 by Plenum Press.
Figure 7.4. Schematic model of the Electrical Double Layer (EDL) at the metal oxide-aqueous solution interface showing elements of the Gouy-Chapman-Stern-Grahame model, including specifically adsorbed cations and non-specifically adsorbed solvated anions. The zero-plane is defined by the location of surface sites, which may be protonated or deprotonated. The inner Helmholtz plane, or [i-planc, is defined by the centers of specifically adsorbed anions and cations. The outer Helmholtz plane, d-plane, or Stern plane corresponds to the beginning of the diffuse layer of counter-ions and co-ions. Cation size has been exaggerated. Estimates of the dielectric constant of water, e, are indicated for the first and second water layers nearest the interface and for bulk water (modified after [6]). Figure 7.4. Schematic model of the Electrical Double Layer (EDL) at the metal oxide-aqueous solution interface showing elements of the Gouy-Chapman-Stern-Grahame model, including specifically adsorbed cations and non-specifically adsorbed solvated anions. The zero-plane is defined by the location of surface sites, which may be protonated or deprotonated. The inner Helmholtz plane, or [i-planc, is defined by the centers of specifically adsorbed anions and cations. The outer Helmholtz plane, d-plane, or Stern plane corresponds to the beginning of the diffuse layer of counter-ions and co-ions. Cation size has been exaggerated. Estimates of the dielectric constant of water, e, are indicated for the first and second water layers nearest the interface and for bulk water (modified after [6]).
Fig. 7.7. (a) A double layer, a simple hypothetical type of electrified interface in which a layer of ions on the outer Helmholtz plane constitutes the entire excess charge in the solution. The solvation sheaths of these ions and the first row of water molecules on the electrode are not shown in the diagram, (b) The electrical equivalent of such a double layer is a parallel-plate condenser. [Pg.326]

Fig. 2.2 Structure of the electric double layer under different conditions of electrode polarization (a) metal positively charged, anions present at the inner Helmholtz plane (chemically interacting with metal) and in the diffuse double layer beyond the outer Helmholtz plane (b) metal negatively charged, inner Helmholtz plane empty, cations in diffuse layer (c) metal positively charged, strong adsorption of anions in inner Helmholtz plane, balancing cations in the diffuse layer... Fig. 2.2 Structure of the electric double layer under different conditions of electrode polarization (a) metal positively charged, anions present at the inner Helmholtz plane (chemically interacting with metal) and in the diffuse double layer beyond the outer Helmholtz plane (b) metal negatively charged, inner Helmholtz plane empty, cations in diffuse layer (c) metal positively charged, strong adsorption of anions in inner Helmholtz plane, balancing cations in the diffuse layer...
The electric field which actually affects the charge transfer kinetics is that between the electrode and the plane of closest approach of the solvated electroactive species ( outer Helmholtz plane ), as shown in Fig. 2.2. While the potential drop across this region generally corresponds to the major component of the polarization voltage, a further potential fall occurs in the diffuse double layer which extends from the outer Hemlholtz plane into the bulk of the solution. In addition, when ions are specifically absorbed at the electrode surface (Fig. 2.2c), the potential distribution in the inner part of the double layer is no longer a simple function of the polarization voltage. Under these circumstances, serious deviations from Tafel-like behaviour are common. [Pg.49]

Next comes a layer of nonspecifically adsorbed counterions with their hydration shell. Still, the permittivity is significantly reduced because the water molecules are not free to rotate. This layer specifies the outer Helmholtz plane. Finally there is the diffuse layer. A detailed discussion of the structure of the electric double layer at a metal surface is included in Ref. [65],... [Pg.53]

Mixed type of inhibitors are generally represented by organic compounds. Irrespective of the type of inhibitor, the inhibition process involves transport of inhibitor to the metal site followed by interaction of the inhibitor with the surface of the metal, resulting in protection. We now recall the electrical double layer consisting of inner and outer Helmholtz planes and the distribution of anions (A ), cations and water dipoles. This is schematically shown in Figure 1.59. When an inhibitor is added the structure of the double layer is affected, with the inhibitor displacing the adsorbed water molecules on the metal surface and taking their place on the metal surface. [Pg.82]

The static - double-layer effect has been accounted for by assuming an equilibrium ionic distribution up to the positions located close to the interface in phases w and o, respectively, presumably at the corresponding outer Helmholtz plane (-> Frumkin correction) [iii], see also -> Verwey-Niessen model. Significance of the Frumkin correction was discussed critically to show that it applies only at equilibrium, that is, in the absence of faradaic current [vi]. Instead, the dynamic Levich correction should be used if the system is not at equilibrium [vi, vii]. Theoretical description of the ion transfer has remained a matter of continuing discussion. It has not been clear whether ion transfer across ITIES is better described as an activated (Butler-Volmer) process [viii], as a mass transport (Nernst-Planck) phenomenon [ix, x], or as a combination of both [xi]. Evidence has been also provided that the Frumkin correction overestimates the effect of electric double layer [xii]. Molecular dynamics (MD) computer simulations highlighted the dynamic role of the water protrusions (fingers) and friction effects [xiii, xiv], which has been further studied theoretically [xv,xvi]. [Pg.369]

The -vk contribution to / in Eq. (26) from the desorbing water molecules can be roughly estimated by assuming that the potential varies linearly with the distance x in the compact layer enclosed between the electrode surface plane x = 0 and the outer Helmholtz plane x = d. In the presence of a strong excess of a nonspecifically adsorbed supporting electrolyte or upon correction for the potential difference across the diffuse layer, the electric potential in the bulk... [Pg.333]

Conversely, according to the description of the electrical double layer based on the Stern-Gouy-Chapman (S-G-C) version of the theory [24], counter ions cannot get closer to the surface than a certain distance (plane of closest approach of counter ions). Chemically adsorbed ions are located at the inner Helmholtz plane (IHP), while non-chemically adsorbed ions are located in the outer Helmholtz plane (OHP) at a distance x from the surface. The potential difference between this plane and the bulk solution is 1 ohp- In this version of the theory, Pqhp replaces P in all equations. Two regions are discernible in the double layer the compact area between the charged surface and the OHP in which the potential decays linearly and the diffuse layer in which the potential decay is almost exponential due to screening effects. [Pg.32]


See other pages where Electrical outer-Helmholtz plane is mentioned: [Pg.63]    [Pg.98]    [Pg.450]    [Pg.457]    [Pg.225]    [Pg.231]    [Pg.289]    [Pg.585]    [Pg.4]    [Pg.128]    [Pg.131]    [Pg.20]    [Pg.28]    [Pg.327]    [Pg.235]    [Pg.84]    [Pg.63]    [Pg.23]    [Pg.95]    [Pg.645]    [Pg.615]    [Pg.231]    [Pg.150]    [Pg.352]    [Pg.321]   
See also in sourсe #XX -- [ Pg.235 ]




SEARCH



Helmholtz

Helmholtz plane

Outer Helmholtz plane

© 2024 chempedia.info