Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electric fields, static structure

Among the recently published works, the one which showed that the cyclic structures of water clusters open up to form a linear structure above a certain threshold electric field value a was a systematic ab initio study on the effect of electric field on structure, energetics, and transition states of trimer, tetramer, and pentamer water clusters (both cyclic and acyclic) [36], Considering c/.v-butadiene as a model system, the strength and the direction of a static electric field has been used to examine the delocalization energy, the probabilities of some local electronic structures, the behavior of electron pairs, and the electronic fluctuations [37]. Another recent work performed by Rai et al. focused on the studies using the DFT and its time-dependent counterpart of effects of uniform static electric field on aromatic and aliphatic hydrocarbons [38],... [Pg.368]

Ohihoff C, Lupke G, Meyer C and Kurz H 1997 Static and high-frequency electric fields in silicon MOS and MS structures probed by optical second-harmonic generation Phys. Rev. B 55 4596-606... [Pg.1305]

The multiplier structures may be divided into two main types (1) dynamic and (2) static. The dynamic multiplier in its simplest form consists of two parallel dynode surfaces with an alternating electric field applied between them. Elections leaving one suiface at the piopei phase, of the applied field are accelerated to the other surface where they knock out secondary electrons. These electrons, in turn, are accelerated back to the first plate when the field reverses, creating still more secondary electrons. Eventually, the secondary electrons are collected by an anode placed in... [Pg.1288]

A good example of the use of the electric resonance technique is the measurement of the Na nd fine structure intervals and tensor polarizabilities.38 These transitions were observed using selective field ionization, although they appear to be unlikely prospects for field ionization detection because of the small separations of the levels, 20 MHz. The nd3/2 states were selectively excited from the 3p1/2 state in a small static electric field and the = 0 transitions to the nd5/2 states induced by a... [Pg.355]

The reaction between ammonia and methyl halides has been studied by using ab initio quantum-chemical methods.90 An examination of the stationary points in the reaction potential surface leads to a possible new interpretation of the detailed mechanism of this reaction in different media, hr the gas phase, the product is predicted to be a strongly hydrogen-bonded complex of alkylammonium and halide ions, in contrast to the observed formation of the free ions from reaction hr a polar solvent. Another research group has also studied the reaction between ammonia and methyl chloride.91 A quantitative analysis was made of the changes induced on the potential-energy surface by solvation and static uniform electric fields, with the help of different indexes. The indexes reveal that external perturbations yield transition states which are both electronically and structurally advanced as compared to the transition state in the gas phase. [Pg.314]

Continuum solvation models consider the solvent as a homogeneous, isotropic, linear dielectric medium [104], The solute is considered to occupy a cavity in this medium. The ability of a bulk dielectric medium to be polarized and hence to exert an electric field back on the solute (this field is called the reaction field) is determined by the dielectric constant. The dielectric constant depends on the frequency of the applied field, and for equilibrium solvation we use the static dielectric constant that corresponds to a slowly changing field. In order to obtain accurate results, the solute charge distribution should be optimized in the presence of the field (the reaction field) exerted back on the solute by the dielectric medium. This is usually done by a quantum mechanical molecular orbital calculation called a self-consistent reaction field (SCRF) calculation, which is iterative since the reaction field depends on the distortion of the solute wave function and vice versa. While the assumption of linear homogeneous response is adequate for the solvent molecules at distant positions, it is a poor representation for the solute-solvent interaction in the first solvation shell. In this case, the solute sees the atomic-scale charge distribution of the solvent molecules and polarizes nonlinearly and system specifically on an atomic scale (see Figure 3.9). More generally, one could say that the breakdown of the linear response approximation is connected with the fact that the liquid medium is structured [105],... [Pg.348]

Because a ceramic is composed of a large number of randomly oriented crystallites it would normally be expected to be isotropic in its properties. The possibility of altering the direction of the polarization in the crystallites of a ferroelectric ceramic (a process called poling ) makes it capable of piezoelectric, pyroelectric and electro-optic behaviour. The poling process - the application of a static electric field under appropriate conditions of temperature and time -aligns the polar axis as near to the field direction as the local environment and the crystal structure allow. [Pg.18]

Bersohn 76) has calculated the crystal field created by the molecular dipoles in the lattice of CH3C1. The static dipole moment of the molecules induces through the polarizability of the molecules an additional dipole moment which increases the dipole moment of the free molecule by a factor of about 1.05. This in turn means that the C—Cl bond has increased in ionic character under the influence of the intermolecular electric fields and therefore (see Eq. (II.9 the quadrupole coupling constant will be lower relative to the gaseous state. Besides the dipole moment induced in the direction of the static dipole, a perpendicular partial moment should be induced, too. Therefore the axial symmetry of the C—Cl bond will be disturbed and the asymmetry parameter 77 may become unequal zero. A small asymmetry parameter 17 = 0.028 has been observed for the nuclear quadrupole interaction in solid CH3I. Bersohn also calculated from the known crystal structure of 1,3,5-trichlorobenzene the induced... [Pg.16]

When r = 0, S(q, r) becomes the static structure factor 113]. Thus the normalized electric field ACF is simply... [Pg.211]

Most properties of solids represent the response of the solid to some external electromagnetic field or mechanical force. The response of the electronic states to electromagnetic fields is so directly related to electronic structure that it is appropriate to discuss it first. We are interested in absorption and reflection of light as well as in the ordinary dielectric and diamagnetic properties of solids. When static or slowly varying electric fields act on a polar semiconductor, the two types of atoms in the semiconductor will move with respect to each other, giving a lattice... [Pg.96]


See other pages where Electric fields, static structure is mentioned: [Pg.800]    [Pg.184]    [Pg.57]    [Pg.220]    [Pg.57]    [Pg.27]    [Pg.237]    [Pg.60]    [Pg.109]    [Pg.255]    [Pg.149]    [Pg.261]    [Pg.56]    [Pg.150]    [Pg.397]    [Pg.113]    [Pg.206]    [Pg.570]    [Pg.111]    [Pg.408]    [Pg.288]    [Pg.307]    [Pg.44]    [Pg.352]    [Pg.141]    [Pg.146]    [Pg.695]    [Pg.283]    [Pg.209]    [Pg.99]    [Pg.185]    [Pg.198]    [Pg.98]    [Pg.110]    [Pg.598]    [Pg.83]    [Pg.185]    [Pg.198]   
See also in sourсe #XX -- [ Pg.40 , Pg.366 ]




SEARCH



Static Electrization

Static electricity

Static field

© 2024 chempedia.info