Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Effluents compounds

The high cost of coal handling and preparation and treatment of effluents, compounded by continuing low prices for cmde oil and natural gas, has precluded significant exploitation of coal as a feedstock for methanol. A small amount of methanol is made from coal in South Africa for local strategic reasons. Tennessee Eastman operates a 195,000-t/yr methanol plant in Tennessee based on the Texaco coal gasification process to make the methyl acetate intermediate for acetic anhydride production (15). [Pg.278]

Figure 9.11 (a) A TGA thermogram of polystyrene foam, 3 mg sample, TGA heating rate 15 °C/min, helium carrier gas (b) GC chromatogram of effluent compounds from pyrolysis of polystyrene foam. Column temperature 50 °C for 7 min, then programmed at 24 °C/min at 250 °C... [Pg.353]

The process is designed from a knowledge of physical concentrations, whereas aqueous effluent treatment systems are designed from a knowledge of BOD and COD. Thus we need to somehow establish the relationship between BOD, COD, and the concentration of waste streams leaving the process. Without measurements, relationships can only be established approximately. The relationship between BOD and COD is not easy to establish, since different materials will oxidize at different rates. To compound the problem, many wastes contain complex mixtures of oxidizable materials, perhaps together with chemicals that inhibit the oxidation reactions. [Pg.309]

Removal of bases from mixtures of bases and neutral compounds. The procedure here is essentially the same as in (i) above. The base is retained by the column. Use a solution of 0 05 g. of benzylamine and o-i g. of mannitol in 100 ml. of water. The effluent contains only mannitol. [Pg.57]

The principal calcium salt used as a flocculant is calcium hydroxide [1305-62-0] or lime. It has been used in water treatment for centuries (see Calcium compounds). Newer products are more effective, and its use in water and effluent treatment is declining (10). It is still used as a pH modifier and to precipitate metals as insoluble hydroxides. Lime is also sometimes used in combination with polymeric flocculants. [Pg.32]

Inorganic flocculants are analyzed by the usual methods for compounds of this type. Residual metal ions in the effluent are measured by spectroscopic techniques such as atomic absorption. Polymeric aluminum species formed in solution have been characterized by Al-nmr (64). [Pg.36]

Toxic or malodorous pollutants can be removed from industrial gas streams by reaction with hydrogen peroxide (174,175). Many Hquid-phase methods have been patented for the removal of NO gases (138,142,174,176—178), sulfur dioxide, reduced sulfur compounds, amines (154,171,172), and phenols (169). Other effluent treatments include the reduction of biological oxygen demand (BOD) and COD, color, odor (142,179,180), and chlorine concentration. [Pg.481]

Petroleum. Apart from its use ia petrochemicals manufacture, there are a number of small, scattered uses of lime ia petroleum (qv) production. These are ia making red lime (drilling) muds, calcium-based lubricating grease, neutralization of organic sulfur compounds and waste acid effluents, water treatment ia water flooding (secondary oil recovery), and use of lime and pozzolans for cementing very deep oil wells. [Pg.179]

Problems of removal of mercury from aqueous effluents are more comphcated in plants that manufacture a variety of inorganic and organic mercury compounds it is generally best to separate the effluent streams of inorganic and organic mercurials. When phenyhnercuric acetate is precipitated from its solution in acetic acid by addition of water, the filtrate is collected and reused for the next precipitation. This type of recycling is necessary not only for economic reasons but also to minimise recovery operations. [Pg.117]

When an aqueous effluent stream containing organomercurials cannot be recycled, it may be treated with chlorine to convert the organomercury to inorganic mercury. The inorganic compounds thus formed are reduced to metallic mercury with sodium borohydride. The mercury metal is drained from the reactor, and the aqueous solution discarded. The process utilising sodium borohydride is known as the Ventron process (27). [Pg.117]

The solvent is 28 CC-olefins recycled from the fractionation section. Effluent from the reactors includes product a-olefins, unreacted ethylene, aluminum alkyls of the same carbon number distribution as the product olefins, and polymer. The effluent is flashed to remove ethylene, filtered to remove polyethylene, and treated to reduce the aluminum alkyls in the stream. In the original plant operation, these aluminum alkyls were not removed, resulting in the formation of paraffins (- 1.4%) when the reactor effluent was treated with caustic to kill the catalyst. In the new plant, however, it is likely that these aluminum alkyls are transalkylated with ethylene by adding a catalyst such as 60 ppm of a nickel compound, eg, nickel octanoate (6). The new plant contains a caustic wash section and the product olefins still contain some paraffins ( 0.5%). After treatment with caustic, cmde olefins are sent to a water wash to remove sodium and aluminum salts. [Pg.439]

Oxidation of cumene to cumene hydroperoxide is usually achieved in three to four oxidizers in series, where the fractional conversion is about the same for each reactor. Fresh cumene and recycled cumene are fed to the first reactor. Air is bubbled in at the bottom of the reactor and leaves at the top of each reactor. The oxidizers are operated at low to moderate pressure. Due to the exothermic nature of the oxidation reaction, heat is generated and must be removed by external cooling. A portion of cumene reacts to form dimethylbenzyl alcohol and acetophenone. Methanol is formed in the acetophenone reaction and is further oxidized to formaldehyde and formic acid. A small amount of water is also formed by the various reactions. The selectivity of the oxidation reaction is a function of oxidation conditions temperature, conversion level, residence time, and oxygen partial pressure. Typical commercial yield of cumene hydroperoxide is about 95 mol % in the oxidizers. The reaction effluent is stripped off unreacted cumene which is then recycled as feedstock. Spent air from the oxidizers is treated to recover 99.99% of the cumene and other volatile organic compounds. [Pg.288]

Ethyltoluene is manufactured by aluminum chloride-cataly2ed alkylation similar to that used for ethylbenzene production. All three isomers are formed. A typical analysis of the reactor effluent is shown in Table 9. After the unconverted toluene and light by-products are removed, the mixture of ethyltoluene isomers and polyethyltoluenes is fractionated to recover the meta and para isomers (bp 161.3 and 162.0°C, respectively) as the overhead product, which typically contains 0.2% or less ortho isomer (bp 165.1°C). This isomer separation is difficult but essential because (9-ethyltoluene undergoes ring closure to form indan and indene in the subsequent dehydrogenation process. These compounds are even more difficult to remove from vinyltoluene, and their presence in the monomer results in inferior polymers. The o-ethyltoluene and polyethyltoluenes are recovered and recycled to the reactor for isomerization and transalkylation to produce more ethyltoluenes. Fina uses a zeoHte-catalyzed vapor-phase alkylation process to produce ethyltoluenes. [Pg.489]

Procedures for trapping accelerant vapors in the headspace of a closed container on charcoal that is either encased in a porous pouch or impregnated into a flexible membrane have been described (124). Trace amounts of explosive compounds can be trapped from hplc effluents onto a porous polymer microcolumn for confirmatory gc examination (125). [Pg.250]

Design criteria for carbon adsorption include type and concentration of contaminant, hydrauhc loading, bed depth, and contact time. Typical ranges are 1.4—6.8 L/s/m for hydrauhc loading, 1.5—9.1 m for bed depth, and 10—50 minutes for contact time (1). The adsorption capacity for a particular compound or mixed waste stream can be deterrnined as an adsorption isotherm and pilot tested. The adsorption isotherm relates the observed effluent concentration to the amount of material adsorbed per mass of carbon. [Pg.161]

New areas in adsorption technology include carbonaceous and polymeric resins (3). Based on synthetic organic polymer materials, these resins may find special uses where compound selectivity is important, low effluent concentrations are required, carbon regeneration is impractical, or the waste to be treated contains high levels of inorganic dissolved soHds. [Pg.161]

Precipitation is affected by pH, solubiUty product of the precipitant, ionic strength and temperature of the aqueous stream, and the presence of metal complexes. For each metal precipitant, there is an optimum pH where its solubiUty is lowest and hence, the highest removals may be achieved. When an aqueous stream contains various metals, the precipitation process caimot be optimized for each metal, sometimes making it difficult to achieve effluent targets for each. SolubiUty products depend on the form of the metal compound and ate lowest for metal sulfides, reflecting the relative insolubiUty of these compounds. For example, the solubiUty product for lead sulfide [1314-87-0] is on the order of compared to 10 for lead carbonate. Metal... [Pg.164]


See other pages where Effluents compounds is mentioned: [Pg.351]    [Pg.422]    [Pg.351]    [Pg.422]    [Pg.308]    [Pg.315]    [Pg.101]    [Pg.102]    [Pg.268]    [Pg.36]    [Pg.7]    [Pg.452]    [Pg.5]    [Pg.31]    [Pg.32]    [Pg.81]    [Pg.201]    [Pg.320]    [Pg.147]    [Pg.149]    [Pg.264]    [Pg.401]    [Pg.401]    [Pg.137]    [Pg.246]    [Pg.271]    [Pg.276]    [Pg.279]    [Pg.280]    [Pg.283]    [Pg.283]    [Pg.153]    [Pg.155]    [Pg.477]    [Pg.148]   
See also in sourсe #XX -- [ Pg.34 , Pg.35 ]




SEARCH



Effluent

Electrochemical treatment of inorganic compounds and gaseous effluents

Methyl mercury compounds effluents

Polycylic aromatic musk compounds in sewage treatment plant effluents of Canada and Sweden

© 2024 chempedia.info