Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Efficiency capillary electrophoresis

The preponderance of analytical (and preparative) separations that precede mass spectrometric analyses are carried out using HPLC. Despite its potential for extremely high efficiencies, capillary electrophoresis (CE) remains something of a specialized application, particularly with mass spectrometric detection. The technique is hampered by its reliance on small sample volumes (typically nL injections) in order to avoid loss of separation efficiency. The consequence of these small volumes is a concentration detection limit that is substantially higher than that of techniques such as HPLC. Despite the exquisite sensitivity of mass spectrometers, characterization of related substances present at low femtomole levels (assuming a hypothetical related substance compound with molecular weight 500 daltons present at 0.1% w/w in an equally hypothetical drug substance sample... [Pg.262]

Okhonin, V. Krylova, SM. Krylov, SJM. Nonequilibrium capillary electrophoresis of equilibrium mixtures, mathematical model. Anal. Chem. 2004, 76 (5), 1507-1512. Mellors, J.S. Gorbounov, V. Ramsey, R.S. Ramsey, J.M. Fully integrated glass microfluidic device for performing high-efficiency capillary electrophoresis and electrospray ionization mass spectrometry. Anal. Chem. 2008, 80 (18), 6881-6887. [Pg.725]

The electroosmotic flow profile is very different from that for a phase moving under forced pressure. Figure 12.40 compares the flow profile for electroosmosis with that for hydrodynamic pressure. The uniform, flat profile for electroosmosis helps to minimize band broadening in capillary electrophoresis, thus improving separation efficiency. [Pg.599]

Efficiency The efficiency of capillary electrophoresis is characterized by the number of theoretical plates, N, just as it is in GC or ITPLC. In capillary electrophoresis, the number of theoretic plates is determined by... [Pg.600]

First, solutes with larger electrophoretic mobilities (in the same direction as the electroosmotic flow) have greater efficiencies thus, smaller, more highly charged solutes are not only the first solutes to elute, but do so with greater efficiency. Second, efficiency in capillary electrophoresis is independent of the capillary s length. Typical theoretical plate counts are approximately 100,000-200,000 for capillary electrophoresis. [Pg.601]

One of the important problems in the diagnosis of different disease in their early stages is the determination of bio-active substances in biological fluids. We are currently interested in applying capillary electrophoresis (CE) as technique for the rapid and highly efficient separation of corticosteroids in semm and urine. Steroids can analyze by MEKC. [Pg.250]

Enantioresolution in capillary electrophoresis (CE) is typically achieved with the help of chiral additives dissolved in the background electrolyte. A number of low as well as high molecular weight compounds such as proteins, antibiotics, crown ethers, and cyclodextrins have already been tested and optimized. Since the mechanism of retention and resolution remains ambiguous, the selection of an additive best suited for the specific separation relies on the one-at-a-time testing of each individual compound, a tedious process at best. Obviously, the use of a mixed library of chiral additives combined with an efficient deconvolution strategy has the potential to accelerate this selection. [Pg.62]

Capillary electrophoresis (CE) has several unique advantages compared to HPLC, snch as higher efficiency dne to non-parabolic fronting, shorter analytical time, prodnction of no or much smaller amounts of organic solvents, and lower cost for capillary zone electrophoresis (CZE) and fused-silica capillary techniques. However, in CZE, the most popular separation mode for CE, the analytes are separated on the basis of differences in charge and molecular sizes, and therefore neutral compounds snch as carotenoids do not migrate and all co-elute with the electro-osmotic flow. [Pg.463]

Carmine extracted from cochineal insects is one of the most used natural colorings for beverages and other foods. Some representative articles refer to isolation and spectrometric analysis or the use of HPLC or capillary electrophoresis (CE) to separate and characterize all cochineal pigments. Its active ingredient, carminic acid, was quantified by rapid HPLC-DAD or fluorescence spectrometry. Carminic acid, used as an additive in milk beverages, was separated within 9 min using a high-efficiency CE separation at pH 10.0 after a previous polyamide column solid phase extraction (SPE), ... [Pg.524]

At present, the most promising methods for synthetic colorant analysis seem to be those based on separation approaches such as HPLC and capillary electrophoresis (CE). CE is the method of choice for the determination of synthetic dyes in biological materials while HPLC is generally a more suitable method for the identification and determination of hydrophobic natural pigments, having a better sensitivity and efficiency than CE. [Pg.542]

The spectrum of new analytical techniques includes superior separation techniques and sophisticated detection methods. Most of the novel instruments are hyphenated, where the separation and detection elements are combined, allowing efficient use of materials sometimes available only in minute quantities. The hyphenated techniques also significantly increase the information content of the analysis. Recent developments in separation sciences are directed towards micro-analytical techniques, including capillary gas chromatography, microbore high performance liquid chromatography, and capillary electrophoresis. [Pg.386]

High performance capillary electrophoresis in its current form is a new technique. Its feasibility has been proven by the analysis and separation of small ions, drugs, chiral molecules, polymers, and biopolymers.93 We are learning more every day about the small tricks of the trade of the technique, and the efficiency and reproducibility of the methods are improving. [Pg.403]

Capillary electrophoresis offers several useful methods for (i) fast, highly efficient separations of ionic species (ii) fast separations of macromolecules (biopolymers) and (iii) development of small volume separations-based sensors. The very low-solvent flow (l-10nL min-1) CE technique, which is capable of providing exceptional separation efficiencies, places great demands on injection, detection and the other processes involved. The total volume of the capillaries typically used in CE is a few microlitres. CE instrumentation must deliver nL volumes reproducibly every time. The peak width of an analyte obtained from an electropherogram depends not only on the bandwidth of the analyte in the capillary but also on the migration rate of the analyte. [Pg.273]

In analytical chemistry there is an ever-increasing demand for rapid, sensitive, low-cost, and selective detection methods. When POCL has been employed as a detection method in combination with separation techniques, it has been shown to meet many of these requirements. Since 1977, when the first application dealing with detection of fluorophores was published [60], numerous articles have appeared in the literature [6-8], However, significant problems are still encountered with derivatization reactions, as outlined earlier. Consequently, improvements in the efficiency of labeling reactions will ultimately lead to significant improvements in the detection of these analytes by the POCL reaction. A promising trend is to apply this sensitive chemistry in other techniques, e.g., in supercritical fluid chromatography [186] and capillary electrophoresis [56-59], An alter-... [Pg.166]


See other pages where Efficiency capillary electrophoresis is mentioned: [Pg.56]    [Pg.72]    [Pg.56]    [Pg.72]    [Pg.609]    [Pg.610]    [Pg.278]    [Pg.337]    [Pg.501]    [Pg.265]    [Pg.198]    [Pg.285]    [Pg.299]    [Pg.147]    [Pg.263]    [Pg.779]    [Pg.779]    [Pg.61]    [Pg.289]    [Pg.386]    [Pg.433]    [Pg.275]    [Pg.642]    [Pg.16]    [Pg.309]    [Pg.77]    [Pg.380]    [Pg.397]    [Pg.397]    [Pg.141]    [Pg.113]    [Pg.236]    [Pg.429]    [Pg.465]    [Pg.182]    [Pg.50]   
See also in sourсe #XX -- [ Pg.522 ]




SEARCH



Capillary electrophoresis separation efficiency

© 2024 chempedia.info