Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Earth s surface

For molecules exposed to the intensity of sunlight at the earth s surface this would suggest that the molecule might be excited once in the age of the universe. However, the probability is proportional to the square of the light intensity. For a molecule exposed to a pulsed laser focused to a small spot, the probability of being excited by one pulse may be easily observable by fluorescence excitation or multiphoton ionization teclnhques. [Pg.1146]

Titanium is not a rare element it is the most abundant transition metal after iron, and is widely distributed in the earth s surface, mainly as the dioxide TiOj and ilmenite FeTi03. It has become of commercial importance since World War II mainly because of its high strength-weight ratio (use in aircraft, especially supersonic), its... [Pg.369]

Ozone s presence in the atmosphere (amounting to the equivalent of a layer 3 mm thick under ordinary pressures and temperatures) helps prevent harmful ultraviolet rays of the sun from reaching the earth s surface. Pollutants in the atmosphere may have a detrimental effect on this ozone layer. Ozone is toxic and exposure should not exceed 0.2 mg/m (8-hour time-weighted average - 40-hour work week). Undiluted ozone has a bluish color. Liquid ozone is bluish black and solid ozone is violet-black. [Pg.21]

When we consider sources of methane we have to add old methane methane that was formed millions of years ago but became trapped beneath the earth s surface to the new methane just de scribed Firedamp an explosion hazard to miners oc curs in layers of coal and is mostly methane Petroleum deposits formed by microbial decomposi tion of plant material under anaerobic conditions are always accompanied by pockets of natural gas which IS mostly methane... [Pg.66]

An aerosol is a suspension of either a solid or a liquid in a gas. Fog, for example, is a suspension of small liquid water droplets in air, and smoke is a suspension of small solid particulates in combustion gases. In both cases the liquid or solid particulates must be small enough to remain suspended in the gas for an extended time. Solid aerosol particulates, which are the focus of this problem, usually have micrometer or submicrometer diameters. Over time, solid particulates settle out from the gas, falling to the Earth s surface as dry deposition. [Pg.7]

When the actual temperature-decline-with-altitude is greater than 9.8°C/1000 m, the atmosphere is unstable, the Cj s become larger, and the concentrations of poUutants lower. As the lapse rate becomes smaUer, the dispersive capacity of the atmosphere declines and reaches a minimum when the lapse rate becomes positive. At that point, a temperature inversion exists. Temperature inversions form every evening in most places. However, these inversions are usuaUy destroyed the next morning as the sun heats the earth s surface. Most episodes of high poUutant concentrations are associated with multiday inversions. [Pg.367]

Acid Deposition. Acid deposition, the deposition of acids from the atmosphere to the surface of the earth, can be dry or wet. Dry deposition involves acid gases or their precursors or acid particles coming in contact with the earth s surface and thence being retained. The principal species associated with dry acid deposition are S02(g), acid sulfate particles, ie, H2SO4 and NH HSO, and HN02(g). Measurements of dry deposition are quite sparse, however, and usually only speciated as total and total NO3. In general, dry acid deposition is estimated to be a small fraction of the total... [Pg.377]

Equation 25 represents the reaction responsible for the removal of uv-B radiation (280—330 nm) that would otherwise reach the earth s surface. There is concern that any process that depletes stratospheric o2one will consequently increase uv-B (in the 293—320 nm region) reaching the surface. Increased uv-B is expected to lead to increased incidence of skin cancer and it could have deleterious effects on certain ecosystems. The first concern over depletion was from NO emissions from a fleet of supersonic transport aircraft that would fly through the stratosphere and cause reactions according to equations 3 and 26 (59) ... [Pg.380]

Distribution of Carbon. Estimation of the amount of biomass carbon on the earth s surface is a problem in global statistical analysis. Although reasonable projections have been made using the best available data, maps, surveys, and a host of assumptions, the vaHdity of the results is impossible to support with hard data because of the nature of the problem. Nevertheless, such analyses must be performed to assess the feasibiHty of biomass energy systems and the gross types of biomass available for energy appHcations. [Pg.9]

The average daily incident solar radiation, or insolation, that strikes the earth s surface worldwide is about 220 W/m (1675 Btu/ft ). The annual insolation on 0.01% of the earth s surface is approximately equal to all energy consumed (ca 1992) by humans in one year, ie, 321 x 10 J (305 X 10 Btu). In the United States, the world s largest energy consumer, annual energy consumption is equivalent (1992) to the insolation on about 0.1 to 0.2% of U.S. total surface. [Pg.10]

Depletion of the Ozone Layer. As a constituent of the atmosphere, ozone forms a protective screen by absorbing radiation of wavelengths between 200 and 300 nm, which can damage DNA and be harmful to life. Consequently, a decrease in the stratospheric ozone concentration results in an increase in the uv radiation reaching the earth s surfaces, thus adversely affecting the climate as well as plant and animal life. Pot example, the incidence of skin cancer is related to the amount of exposure to uv radiation. [Pg.503]

Although the naturally occurring concentration of ozone at the earth s surface is low, the distribution has been altered by the emission of pollutants, primarily by automobiles but also from industrial sources which lead to the formation of ozone. The strategy for controlling ambient ozone concentrations arising from automobile exhaust emissions is based on the control of hydrocarbons, CO, and NO via catalytic converters. As a result, peak ozone levels in Los Angeles, for instance, have decreased from 0.58 ppm in 1970 to 0.33 ppm in 1990, despite a 66% increase in the number of vehicles. [Pg.504]

The ionosphere is part of the larger magnetosphere, a cavity in the stream of particles from the sun. The cavity is produced by the earth s magnetic field (56,57). The ionosphere and the Van AHen radiation belt He within the plasmasphere, which extends to a maximum distance of about 15,000 km above the earth s surface. [Pg.113]

Salt acts as a completely mobile plastic below 7600 m of overburden and at temperatures above 200°C (2). Under lesser conditions, salt domes can grow by viscous flow. Salt stmctures originate in horizontal salt beds at depths of 4000—6000 m or more beneath the earth s surface. The resulting salt dome or diapir is typically composed of relatively pure sodium chloride in a vertically elongated, roughly cylindrical, or inverted teardrop-shaped mass. [Pg.179]

Chlorine. Chlorine, the material used to make PVC, is the 20th most common element on earth, found virtually everywhere, in rocks, oceans, plants, animals, and human bodies. It is also essential to human life. Eree chlorine is produced geothermally within the earth, and occasionally finds its way to the earth s surface in its elemental state. More usually, however, it reacts with water vapor to form hydrochloric acid. Hydrochloric acid reacts quickly with other elements and compounds, forming stable compounds (usually chloride) such as sodium chloride (common salt), magnesium chloride, and potassium chloride, all found in large quantities in seawater. [Pg.508]

Fig. 8. Steady-state model for the earth s surface geochemical system. The kiteraction of water with rocks ki the presence of photosynthesized organic matter contkiuously produces reactive material of high surface area. This process provides nutrient supply to the biosphere and, along with biota, forms the array of small particles (sods). Weatheriag imparts solutes to the water, and erosion brings particles kito surface waters and oceans. Fig. 8. Steady-state model for the earth s surface geochemical system. The kiteraction of water with rocks ki the presence of photosynthesized organic matter contkiuously produces reactive material of high surface area. This process provides nutrient supply to the biosphere and, along with biota, forms the array of small particles (sods). Weatheriag imparts solutes to the water, and erosion brings particles kito surface waters and oceans.
Deposition. The products of the various chemical and physical reactions in the atmosphere are eventually returned to the earth s surface. Usually, a useful distinction is made here between wet and dry deposition. Wet deposition, ie, rainout and washout, includes the flux of all those components that are carried to the earth s surface by rain or snow, that is, those dissolved and particulate substances contained in rain or snow. Dry deposition is the flux of particles and gases, especially SO2, FINO, and NFl, to the receptor surface during the absence of rain or snow. Deposition can also occur through fog, aerosols and droplets which can be deposited on trees, plants, or the ground. With forests, approximately half of the deposition of SO(, NH+,andH+ occurs as dry deposition. [Pg.213]

Their contribution to the total dissolved load in rivers can be estimated by considering the mean composition of river water and the relative importance of various rocks to weathering. Estimates (18) indicate that evaporites and carbonates contribute approximately 17% and 38%, respectively, of the total dissolved load in the wodd s rivers. The remaining 45% is the result of the weathering of siUcates, underlining the significant role of these minerals in the overall chemical denudation of the earth s surface. [Pg.214]

Freshwater with less than 500 ppm (or 0.05%) dissolved soHds is generally considered to be potable. Rain is the source of freshwater, and its precipitation of >1.3 x 10 m /d over the earth s surface averages about 1.05 m (depth) per year. Extremes range from almost 2ero ia North Chile s desert borderiag the Pacific Coast to > 25.4 m ia some tropical forests and on some high slopes where the high, cold mountains condense floods from the clouds. [Pg.235]

Dry Deposition. Dry deposition occurs in two steps the transport of pollutants to the earth s surface, and the physical and chemical interaction between the surface and the pollutant. The first is a fluid mechanical process (see Fluid mechanics), the second is primarily a chemical process, and neither is completely characterized at the present time. The problem is confounded by the interaction between the pollutants and biogenic surfaces where pollutant uptake is enhanced or retarded by plant activity that varies with time (47,48). It is very difficult to measure the depositional flux of pollutants from the atmosphere, though significant advances were made during the 1980s and early 1990s (49,50). [Pg.382]

Early models used a value for that remained constant throughout the day. However, measurements show that the deposition velocity increases during the day as surface heating increases atmospheric turbulence and hence diffusion, and plant stomatal activity increases (50—52). More recent models take this variation of into account. In one approach, the first step is to estimate the upper limit for in terms of the transport processes alone. This value is then modified to account for surface interaction, because the earth s surface is not a perfect sink for all pollutants. This method has led to what is referred to as the resistance model (52,53) that represents as the analogue of an electrical conductance... [Pg.382]

Occurrence The beryUium content of the earth s surface rocks has been estimated at 4—6 ppm (1). Although ca 45 beryllium-containing minerals have been identified, only beryl [1302-52-9] and bertrandite [12161 -82-9] are of commercial significance. [Pg.65]


See other pages where Earth s surface is mentioned: [Pg.103]    [Pg.239]    [Pg.294]    [Pg.73]    [Pg.330]    [Pg.378]    [Pg.95]    [Pg.10]    [Pg.30]    [Pg.167]    [Pg.263]    [Pg.263]    [Pg.443]    [Pg.230]    [Pg.347]    [Pg.475]    [Pg.482]    [Pg.497]    [Pg.524]    [Pg.133]    [Pg.232]    [Pg.208]    [Pg.240]    [Pg.380]    [Pg.381]    [Pg.20]    [Pg.305]    [Pg.297]    [Pg.14]   


SEARCH



Earth, surface

© 2024 chempedia.info