Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dynamic strain measurement

Lissak B, Arie A and Tur M, Highly sensitive dynamic strain measurements by locking lasers to fiber Bragg gratings . Optics Lett, 1998, 23(24), 1930-2. [Pg.170]

Strain-gauge pressure transducers are manufactured in many forms for measuring gauge, absolute, and differential pressures and vacuum. Full-scale ranges from 25.4 mm of water to 10,134 MPa are available. Strain gauges bonded direc tly to a diaphragm pressure-sensitive element usually have an extremely fast response time and are suitable for high-frequency dynamic-pressure measurements. [Pg.762]

A technique for performing dynamic mechanical measurements in which the sample is oscillated mechanically at a fixed frequency. Storage modulus and damping are calculated from the applied strain and the resultant stress and shift in phase angle. [Pg.639]

The specimen was prepared by the following method. After mixing HAF carbon black (50 phr) with natural rubber (NR) in a laboratory mixer, carbon gel was extracted from unvulcanized mixture as an insoluble material for toluene for 48 h at room temperamre and dried in a vacuum oven for 24 h at 70°C. We made the specimen as a thin sheet of the carbon gel (including carbon black) by pressing the extracted carbon gel at 90°C. The cured specimen was given by adding sulfur (1.5 phr) to the unvulcanized mixture and vulcanized for 30 min at 145°C. The dynamic viscoelastic measurement was performed with Rheometer under the condition of 0.1% strain and 15 Hz over temperatures. [Pg.527]

In particular it can be shown that the dynamic flocculation model of stress softening and hysteresis fulfils a plausibility criterion, important, e.g., for finite element (FE) apphcations. Accordingly, any deformation mode can be predicted based solely on uniaxial stress-strain measurements, which can be carried out relatively easily. From the simulations of stress-strain cycles at medium and large strain it can be concluded that the model of cluster breakdown and reaggregation for prestrained samples represents a fundamental micromechanical basis for the description of nonlinear viscoelasticity of filler-reinforced rubbers. Thereby, the mechanisms of energy storage and dissipation are traced back to the elastic response of tender but fragile filler clusters [24]. [Pg.621]

Like any dynamic strain instrument, the RPA readily measures a complex torque, S (see Figure 30.1) that gives the complex (shear) modulus G when multiplied by a shape factor B = iTrR / ia, where R is the radius of the cavity and a the angle between the two conical dies. The error imparted by the closure of the test cavity (i.e., the sample s periphery is neither free nor spherical) is negligible for Newtonian fluids and of the order of maximum 10% in the case of viscoelastic systems, as demonstrated through numerical simulation of the actual test cavity." ... [Pg.819]

The linear visco-elastic range ends when the elastic modulus G starts to fall off with the further increase of the strain amplitude. This value is called the critical amplitude yi This is the maximum amplitude that can be used for non-destructive dynamic oscillation measurements... [Pg.417]

Being a very sensitive quantity, however, the relative energy part of the modulus is different for some of the samples, if calculated from static or dynamic data, respectively. (For the calculation method, compare ref. 2J3, K ) Table III gives the values for the relative energy part. ore(j u/ored the ener9Y part calculated from stress-strain measurements Gy/G is the corresponding number obtained from dynamic data at 0.5 Hz. [Pg.317]

Dynamic properties are more relevant than the more usual quasi-static stress-strain tests for any application where the dynamic response is important. For example, the dynamic modulus at low strain may not undergo the same proportionate change as the quasi-static tensile modulus. Dynamic properties are not measured as frequently as they should be simply because of high apparatus costs. However, the introduction of dynamic thermomechanical analysis (DMTA) has greatly widened the availability of dynamic property measurement. [Pg.88]

Filler-filler interaction (Payne effect) - The introduction of reinforcing fillers into rubbery matrices strongly modifies the viscoelastic behavior of the materials. In dynamic mechanical measurements, with increasing strain amplitude, reinforced samples display a decrease of the storage shear modulus G. This phenomenon is commonly known as the Payne effect and is due to progressive destruction of the filler-filler interaction [46, 47]. The AG values calculated from the difference in the G values measured at 0.56% strain and at 100% strain in the unvulcanized state are used to quantify the Payne effect. [Pg.198]

Both series of polyurethanes were prepared using a prepolymer technique in which reactants were mixed at 70 °C/1 hour, cast into molds at 105 °C/2 hours, and cured at 80 °C/14 hours. The BD/MDI hard segment contents ranged from 0% (transparent, colorless homopolyurethanes) to 30% w/w (opaque, white copolyurethanes). All elastomers were characterized using DSC, dynamic mechanical, and tensile stress-strain measurements. [Pg.428]

A. S. Kobayashi and K.-H. Yang A Hybrid Technique for High-Temperature Dynamic Fracture Analysis, in Applications of Advanced Measurement Techniques, British Society for Strain Measurements, Whittles Publishing Caithess, U.K., 1988, pp. 109-120. [Pg.121]

Dynamic mechanical measurements were performed with a Rheometrics model RMS 7200 mechanical spectrometer at a fixed frequency of 1 rad/s through a temperature range from -100 C to 150 C under dry nitrogen. The test specimens were prepared in rectangular shape about 60 mm in length, 11 mm in width, and 4 mm in thickness. The applied strain was 1%. [Pg.447]

To understand elastic mechanical properties, the discussion of the storage of energy of deformation provides a powerful approach. Dynamic mechanical measurements at higher strain on filled silicone elastomers show that the energy of deformation may be related to an entropic and an enthalpic part. The entropic part is mainly due to the restriction of the conformational space of the polymer chain by the presence of the solid silica particles. Whereas the enthalpic part of the energy of deformation is related to... [Pg.774]

Dynamic mechanical measurements are performed at very small strains in order to ensure that linear viscoelasticity relations can be applied to the data. Stress-strain data involve large strain behavior and are accumulated in the nonlinear region. In other words, the tensile test itself alters the structure of the test specimen, which usually cannot be cycled back to its initial state. (Similarly, dynamic deformations at large strains test the fatigue resistance of the material.)... [Pg.420]

Generally large yield stress effects were dominant in the nematic melts, but they were strongly pre-history dependent. A three region flow curve for 15 mol % modified poly(pheny1-1,4-phenylene terephthalate) was probably due to a not completely molten system. Dynamic viscosity measurements showed strong pseudoplastic behaviour. Strain and time dependence phenomena were not observed. [Pg.60]


See other pages where Dynamic strain measurement is mentioned: [Pg.158]    [Pg.158]    [Pg.1365]    [Pg.50]    [Pg.293]    [Pg.780]    [Pg.781]    [Pg.810]    [Pg.22]    [Pg.55]    [Pg.114]    [Pg.125]    [Pg.86]    [Pg.79]    [Pg.195]    [Pg.366]    [Pg.125]    [Pg.127]    [Pg.9]    [Pg.119]    [Pg.11]    [Pg.133]    [Pg.436]    [Pg.439]    [Pg.426]    [Pg.839]    [Pg.181]    [Pg.65]    [Pg.74]    [Pg.288]    [Pg.152]   
See also in sourсe #XX -- [ Pg.337 ]




SEARCH



Dynamic strain

Strain measurement

Strain measures

© 2024 chempedia.info