Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dynamic methods with tracers

Figure 17, on the basis of tests carried out by dynamic methods with different tracers at the Politecnico of Torino, shows that Dapp eff increases with the liquid velocity and tends to 1. This is in quantitative agreement with a similar plot of k pp/k proposed by Satterfield [67] based on data obtained by measuring catalyst effectiveness in commercial units for oil treatment. [Pg.658]

Anew experimental method based on the polarization-selective photochromic reactions is proposed to monitor extremely slow reorientation dynamics of molecular tracers in glassy polymer matrix. The correlations between the local relaxation processes of polymers and the reorientation dynamics of the tracers with different sizes are found from the experimental results obtained by this method. [Pg.325]

Reorientation dynamics of molecular tracers in polymers is not only important for the understanding of slow relaxation phenomena in glassy polymers but plays also a critical role in practical problems such as molecular design of nonlinear optical materials with long-term stability based on dyes/polymers complexes. We show here the reorientation dynamics of molecular tracers in glassy polymers obtained by the armealing-after-irradiation method described below. These experimental results are compared to the local relaxation processes of glassy polymers obtained by the already established measurement techniques such as dielectric relaxation and solid state NMR. Finally, the molecular interpretation of the relaxation of free-volume distribution in polymers will be discussed. [Pg.325]

The dynamic liquid holdup was measured by the classical tracer technique and an electrochemical method with probes covering a cross section of the column was employed for the determination of kgS, S being the active liquid-solid surface.. [Pg.827]

Some methods for pore structure analysis have been presented The adsorption of benzene and the evaluation of isotherms through the Dubinin - Radushkevich equation, the estimation of immersion heats in benzene, the adsorption of water at relative pressures of h=0.6 and 1.0, the size exclusion liquid chromatography with tracers of different molecular diameters and the one - point adsorption of nitrogen. Six active carbons are included in the investigations. It is not possible to obtain reliable values with the simple water adsorption method. The results obtained with other methods are compared with performances of adsorption of phenol from aqueous solutions as obtained from measuring equilibria and column dynamics. It is shown, that the rank of the results of pore structure analysis is the same as from the dynamic experiments. [Pg.491]

The method covers the full dynamic range of linear velocities from a few centimetres/second to over 100 meters/seconds with one and the same instrumental set-up. Only the amount of tracer used per injection is varied. [Pg.1055]

In principle, chemical information on a system can only be obtained with methods that do not alter the species present in solution. However, in order to get this information, an external perturbation must be applied to the system and its response must be analyzed. In the case of radioactive tracer, where the radioactivity measurement is the only way to detect the element (but it does not allow the identification of the form of the species), two types of external perturbation can be applied (i) by contacting the system with a second phase and subsequently observing the distribution of the radionuclides between the two phases (static or dynamic partition) or (ii) by applying an electrical potential or a chemical gradient (transport methods). So far, transport methods have not yet been used in one-atom-at-a-time... [Pg.103]

In Stokesian dynamics (Section VIII), a direct simulation is made starting with a randomly chosen initial particle configuration. The structure is allowed to evolve as part of the detailed fluid-mechanical solution, and the hydro-dynamic particle interactions are determined at least to the extent of assuming pairwise additivity of these interactions. The momentum tracer method (Section VIII) is characterized by the interesting feature that the particulate phase of the suspension is at rest. The static configuration of this suspension is... [Pg.18]

CE with LIF of this mixture should reveal two resolved peaks corresponding to bound and free Ab (if it still exists in solution). As in the above case, both peaks and their ratio can be used for analyte quantification. Here the higher the amount of Ab in the sample, the more Ab is displaced from the complex, and hence the higher the peak of the tracer and the lower of the complex. Besides CE-related requirements which the analyzed system should meet (see above), special attention must be paid to proper adjustment of the amount of labeled Ag and Ab added to the sample. In both extreme cases of incorrect adjustment, namely, when the amount of either Ag or Ab is too high, the results might be outside the dynamic range of the calibration curve and hence incorrect. These requirements are very typical for any mode of competitive immunoassay, including ELISA-like methods, and are discussed in detail in related books (see, e.g., Ref. 32). [Pg.127]

In a third paper by the Bernard and Holm group, visual studies (in a sand-packed capillary tube, 0.25 mm in diameter) and gas tracer measurements were also used to elucidate flow mechanisms ( ). Bubbles were observed to break into smaller bubbles at the exits of constrictions between sand grains (see Capillary Snap-Off, below), and bubbles tended to coalesce in pore spaces as they entered constrictions (see Coalescence, below). It was concluded that liquid moved through the film network between bubbles, that gas moved by a dynamic process of the breakage and formation of films (lamellae) between bubbles, that there were no continuous gas path, and that flow rates were a function of the number and strength of the aqueous films between the bubbles. As in the previous studies (it is important to note), flow measurements were made at low pressures with a steady-state method. Thus, the dispersions studied were true foams (dispersions of a gaseous phase in a liquid phase), and the experimental technique avoided long-lived transient effects, which are produced by nonsteady-state flow and are extremely difficult to interpret. [Pg.13]

Coincident with this new technique for procurement of human bone biopsies was the development of quantitive methods of bone analysis.12 These methods include histochemical analysis of both decalcified and unde-calcified42 48 bone sections, microradiography,44 tetracycline labeling45 and autoradiography.42 The latter two techniques require administration of a tetracycline antibiotic or isotopic tracer prior to procurement of the biopsy. Undecalcified thin sections, prepared with the use of a Jung microtome after the bone core is fixed, dehydrated and embedded in methacrylate,45 are analyzed by intersect and point count methods46 47 which permit three-dimensional assessment.48 49 Tetracycline antibiotics deposit in vivo in sites of bone formation constituting markers which can be studied in undecalcified sections by fluorescence microscopy.45 47 This represents the safest and best tissue time marker for microscopic measurement of bone formation dynamics. [Pg.225]

In tracer ZLC (TZLC) [28,51,58] the experiment is similar to the standard method, but the monitored species is the deuterated form of the sorbate. This introduces an additional cost for the material and the requirement for an online mass spectrometer. The advantages are the eUmination of all possible heat effects, strict Unearity of the equiUbrium between the fluid phase and the adsorbed phase, and the possibility of measuring directly the tracer diffusivities (which shoifld be the same as the microscopically measured self-diffusivity) over a wide range of loading. To reduce the costs the carrier is prepared with a mixture of pure and deuterated hydrocarbons. It has been shown that small imbalances in the concentration of the carrier and the purge streams do not affect the desorption dynamics [58]. [Pg.65]

The contribution of MS to identification of compounds and quantification of their concentration is complementary to other detection techniques and, despite being very practical and versatile, it remains fundamentally replaceable. However, knowledge of molecular weight is a prerequisite for techniques that rely on the synergies with stable isotopic tracers. In fact, powerful analytical methods exist to obtain important insights on cell dynamics from the ratiometric measurement of marked and not-marked species (or atoms). We cite, for example, (1) relative abundances of virtually all metabolites or proteins in two separate cultures are quantified based on the isotope dilution theory [43 5] (2) information on the mechanisms and kinetics of nonlinear chemical processes can be extracted from response tracer experiments [46 7] and (3) the labeling patterns in metabolic intermediates are used to resolve the relative rate in convergent reactions in vivo [48,49]. [Pg.18]

While many researchers have focused on the tools of molecular biology and genetics to determine biochemical mechanisms of nutrient action in animal models, a few have focused on mathematical modeling of kinetic data to achieve a quantitative understanding of the dynamics of nutrient metabolism in vivo (for recent symposia, see Abumrad, 1991 Coburn, 1992). Three recent developments stimulated interest in mathematical modeling. First, there is an opportunity to integrate quantitative characteristics of the dynamics of nutrient metabolism with knowledge of nutrient action mechanisms and health status. Second, it appears that some animal models do not mimic nutrient metabolism and health status of humans. Third, stable isotope tracers and reliable methods to measure minute amounts of them in human tissues have become more readily available. [Pg.26]

Soil column experiments with conservative and reactive tracers are used for the development of reactive transport models in soil and groundwater and for the determination of model parameters. The influence of the real structure of the solid layers on the transport and reaction processes is very important and has to be taken into consideration for the development of mathematical transport models (Chin and Wang, 1992). Several methods exist for the investigation of layer structures (ultrasound and electrical tomography, computer tomography with X-rays) (Just et al., 1994 Meyer et al. 1994), but generally these methods give no information about the dynamic processes. [Pg.21]


See other pages where Dynamic methods with tracers is mentioned: [Pg.328]    [Pg.324]    [Pg.25]    [Pg.945]    [Pg.147]    [Pg.200]    [Pg.12]    [Pg.61]    [Pg.143]    [Pg.249]    [Pg.421]    [Pg.1807]    [Pg.1084]    [Pg.126]    [Pg.115]    [Pg.151]    [Pg.249]    [Pg.421]    [Pg.182]    [Pg.283]    [Pg.283]    [Pg.179]    [Pg.4]    [Pg.1299]    [Pg.180]    [Pg.121]    [Pg.46]    [Pg.894]    [Pg.725]    [Pg.873]    [Pg.178]    [Pg.361]    [Pg.246]    [Pg.1057]   
See also in sourсe #XX -- [ Pg.658 ]




SEARCH



Dynamic method

© 2024 chempedia.info