Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dynamic creep compliances

The minus sign in Eqs. (5.10) and (5.11) is the consequence of the strain lagging behind the stress. It can be shown that, for a viscoelastic liquid, the dynamic creep compliances are related to the creep compliance J(t) by the one-sided Fourier transforms ... [Pg.201]

Tackifying resins enhance the adhesion of non-polar elastomers by improving wettability, increasing polarity and altering the viscoelastic properties. Dahlquist [31 ] established the first evidence of the modification of the viscoelastic properties of an elastomer by adding resins, and demonstrated that the performance of pressure-sensitive adhesives was related to the creep compliance. Later, Aubrey and Sherriff [32] demonstrated that a relationship between peel strength and viscoelasticity in natural rubber-low molecular resins blends existed. Class and Chu [33] used the dynamic mechanical measurements to demonstrate that compatible resins with an elastomer produced a decrease in the elastic modulus at room temperature and an increase in the tan <5 peak (which indicated the glass transition temperature of the resin-elastomer blend). Resins which are incompatible with an elastomer caused an increase in the elastic modulus at room temperature and showed two distinct maxima in the tan <5 curve. [Pg.620]

One of the primary mechanical42) techniques for studying the dynamics of polymer fluids near the glass transition is the measurement of the creep compliance 7(f). At the initial time there is a finite compliance associated with the glasslike response of the liquid Jg. The value of the compliance at this point is typically near 1(T10 cm2/dyne. For an uncrosslinked liquid there will be a flow term given by tlrj. The total creep compliance can then be represented as... [Pg.142]

There is strong interest to analytically describe the fzme-dependence of polymer creep in order to extrapolate the deformation behaviour into otherwise inaccessible time-ranges. Several empirical and thermo-dynamical models have been proposed, such as the Andrade or Findley Potential equation [47,48] or the classical linear and non-linear visco-elastic theories ([36,37,49-51]). In the linear viscoelastic range Findley [48] and Schapery [49] successfully represent the (primary) creep compliance D(t) by a potential equation ... [Pg.20]

For viscoelastic fluids, the formalism of a viscous fluid and an elastic solid are mixed [31]. The equations for the effective viscosity, dynamic viscosity, and the creep compliance are given in Table 12.4 for a viscous fluid, an elastic solid, and a visco-elastic solid and fluid. For the viscoelastic fluid model the dynamic viscosity, >j (tu), and the elastic contribution, G (ti)), are plotted as a function of (w) in Figure 12.31. With one relaxation time, X, the breaks in the two curves occur at co. [Pg.587]

Creep-compliance studies conducted in the linear viscoelastic range also provide valuable information on the viscoelastic behavior of foods (Sherman, 1970 Rao, 1992). The existence of linear viscoelastic range may also be determined from torque-sweep dynamic rheological experiments. The creep-compliance curves obtained at all values of applied stresses in linear viscoelastic range should superimpose on each other. In a creep experiment, an undeformed sample is suddenly subjected to a constant shearing stress, Oc. As shown in Figure 3 1, the strain (y) will increase with time and approach a steady state where the strain rate is constant. The data are analyzed in terms of creep-compliance, defined by the relation ... [Pg.117]

The creep-compliance technique has been used extensively by Sherman and co-workers for the study of ice cream, model emulsions, margarine, and butter (Sherman, 1966 Shama and Sherman, 1969 Vernon Carter and Sherman, 1980 Sherman and Benton, 1980). In these studies, the methodology employed was similar to that for ice cream, that is, the creep-compliance data on a sample were described in terms of mechanical models, usually containing four or six elements. Attempts were made to relate the parameters of the models to the structure of the samples studied. However, with increased emphasis on dynamic rheological tests and interpretation of results in terms of composition and structure, the use of mechanical models to interpret results of rheological tests has declined steadily. [Pg.119]

Dynamic rheological and creep compliance, J(t), data were obtained on tomato concentrates made from Pinto 696 hot-break juice prepared and two finisher screens having holes of diameter 0.69 mm (0.027 in) and 0.84 mm (0.033 in) were used (Yoo and Rao, 1996) the finisher was operated at 1000 rpm. The magnitudes of G and G ... [Pg.236]

Rheological properties of mayonnaise have been studied using different rheological techniques steady shear rate-shear stress, time dependent shear rate-shear stress, stress growth and decay at a constant shear rate, dynamic viscoelastic behavior, and creep-compliance viscoelastic behavior. More studies have been devoted to the study of rheological properties of mayonnaise than of salad dressings, probably because the former is a more stable emulsion and exhibits complex viscous and viscoelastic rheological behavior. [Pg.246]

Rheological properties of salad dressings also were studied using the techniques steady shear rate-shear stress, stress growth and decay at a constant shear rate, dynamic viscoelastic behavior, and creep-compliance viscoelastic behavior. [Pg.249]

As mentioned above, it is very difficult, for experimental reasons, to measure the relaxation modulus or the creep compliance at times below 1 s. In this time scale region, dynamic mechanical viscoelastic functions are widely employed (5,6). However, in these methods the measured forces and displacements are not simply related to the stress and strain in the samples. Moreover, in the case of dynamic experiments, inertial effects are frequently important, and this fact must be taken into account in the theoretical methods developed to calculate complex viscoelastic functions from experimental results. [Pg.273]

Strictly speaking, there are no static viscoelastic properties as viscoelastic properties are always time-dependent. However, creep and stress relaxation experiments can be considered quasi-static experiments from which the creep compliance and the modulus can be obtained (4). Such tests are commonly applied in uniaxial conditions for simphcity. The usual time range of quasi-static transient measurements is limited to times not less than 10 s. The reasons for this is that in actual experiments it takes a short period of time to apply the force or the deformation to the sample, and a transitory dynamic response overlaps the idealized creep or relaxation experiment. There is no limitation on the maximum time, but usually it is restricted to a maximum of 10" s. In fact, this range of times is complementary, in the corresponding frequency scale, to that of dynamic experiments. Accordingly, to compare these two complementary techniques, procedures of interconversion of data (time frequency or its inverse) are needed. Some of these procedures are discussed in Chapters 6 and 9. [Pg.296]

In practice, viscoelastic properties can be determined by static and dynamic tests. The typical static test procedure is the creep test. Here, a constant shear stress is applied to the sample over a defined length of time and then removed. The shear strain is monitored as a function of time. The level of stress employed should be high enough to cause sample deformation, but should not result in the destruction of any internal structure present. A typical creep curve is illustrated in Fig. 13A together with the four-element mechanical model that can be used to explain the observations. The creep compliance represents the ratio between shear strain rate and constant stress at any time t. [Pg.3135]

Certain dynamic mechanical measurements are thought to reflect the pseudo-network formed by the entanglements and yield a quantity Z f presumably equal to Z (7, 18). For example, the pseudo network creep compliance observed as a plateau in the creep compliance response is believed to be related to Z through the expression (7)... [Pg.310]

Although creep-compliance (Kawabata, 1977 Dahme, 1985) and stress-relaxation techniques (Comby et al., 1986) have been used to study the viscoelestic properties of pectin solutions and gels, the most common technique is small-deformation dynamic measurement, in which the sample is subjected to a low-amplitude, sinusoidal shear deformation. The resultant stress response may be resolved into an in-phase and 90° out-of-phase components the ratio of these stress components to applied strain gives the storage and loss moduli (G and G"), which can be related by the following expression ... [Pg.283]

The proposed method of data treatment has two advantages (1) It allows assessment of the status of blend miscibility In the melt, and (11) It permits computation of any linear viscoelastic function from a single frequency scan. Once the numerical values of Equation 20 or Equation 21 parameters are established Che relaxation spectrum as well as all linear viscoelastic functions of the material are known. Since there Is a direct relation between the relaxation and Che retardation time spectra, one can compute from Hq(o)) the stress growth function, creep compliance, complex dynamic compliances, etc. [Pg.171]

In the above discussion, six functions Go(w), d(w), G (w), G"(w), /(w), and J"(oj) have been defined in terms of an idealized dynamic testing, while earlier we defined shear stress relaxation modulus G t) (see Equation 3.19) and shear creep compliance J(t) (see Equation 3.21) in terms of an idealized stress relaxation experiment and an idealized creep test, respectively. Mathematical relationships relating any one of these eight functions to any other can be derived. Such relationships for interconversion of viscoelastic function are described by Ferry [5], and interested readers are referred to this treatise for the same. [Pg.309]

Viscoelastic behavior is a time-dependent mechanical response and usually is characterized with creep compliance, stress-relaxation, or dynamic mechanical measurements. Since time is an additional variable to deformation and force, to obtain unique characterizing functions in these measurements one of the usual variables is held constant. [Pg.198]

However, if the creep compliance curves are compared at their respective TgS,we see in Figure 5.16 that the softening dispersions are, within experimental uncertainty, at the same place in the time scale of response. Specifically the positions of the four Jpit/ar) curves at a compliance level of 1.0 x 10 Pa appear to be spread on a time scale by not much more than one decade of time. Relative uncertainties of Tg values of 1.5°C can account for this spread in positions. Until more precise relative TgS can be measured we can tentatively surmise that at Tg all polymers at the same rate are deep in the softening zone. This conclusion appears reasonable when we consider that short-range chain dynamics should determine both creep rates just above the glassy level as well as changes in the local liquid structure, the kinetics of which determine Tg. [Pg.216]

FIGURE 6.7 Atactic polypropylene segmental relaxation times (solid symbols) from mechanical spectroscopy, dynamic light scattering, dielectric relaxation, and NMR, along with the global time-temperature shift factors (open symbols) from dynamic mechanical spectroscopy, creep compliance, and viscosity. Vertical shifts were applied to superpose the data (Roland et al., 2001). [Pg.300]

FIGURE 6.9 Loss tangent of polyisobutylene measured by dynamic mechanical spectroscopy and calculated from the recoverable creep compliance. These are not master curves the abscissa is the actual frequency (Plazek et al., 1995). [Pg.301]

Thus viscoelasticity is characterized by dependencies on temperature and time, the complexities of which may be considerably simplified by the time-temperature superposition principle. Similarly the response to successively loadings can be simply represented using the applied Boltzmann superposition principle. Experimentally viscoelasticity is characterized by creep compliance quantified by creep compliance (for example), stress relaxation (quantified by stress relaxation modulus), and by dynamic mechanical response. [Pg.211]

The viscoelastic behavior is evaluated by means of two types of methods static tests and dynamic tests. In the first calegtuy a step change of stress or strain is applied and the stress or strain response is recorded as a function of time. Stress relaxation, creep compliance, and creep recovery are static methods. The dynamic tests involve the imposition of an oscillatory strain or stress. Every technique is described in the following sections. [Pg.569]


See other pages where Dynamic creep compliances is mentioned: [Pg.238]    [Pg.244]    [Pg.238]    [Pg.244]    [Pg.202]    [Pg.202]    [Pg.143]    [Pg.148]    [Pg.158]    [Pg.351]    [Pg.587]    [Pg.667]    [Pg.104]    [Pg.478]    [Pg.81]    [Pg.131]    [Pg.18]    [Pg.4]    [Pg.215]    [Pg.213]    [Pg.668]   
See also in sourсe #XX -- [ Pg.201 ]




SEARCH



Dynamic compliance

Dynamic creep

© 2024 chempedia.info