Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Droplet explosion

If the effects of the external electric field are taken into account by the analysis of Yang and Carleson, it should be possible to use droplet explosion measurements to determine the surface tension. [Pg.23]

It had been shown that acceleration of the vaporization rate of liquid droplets can be achieved only in a small proportion by increasing the droplet heating rate or by enriching the fuel with oxidants [10]. It is possible, however, to induce an early droplet breakup by incorporating additives that promote droplet explosion in the existing fuel, such as organic azides [9] or, as shown in a following section, some of the hydrocarbon compounds studied in this work. Some of the HED... [Pg.73]

Schematic of an electrospray system. In order to prevent droplet explosion during evaporation of aerosol droplets, the highly charged aerosol is passed through a radioactive neutralizer before evaporation occurs. Reproduced with permission from Chen, X. Hu, X. Feng, J. Nanostruct. Mater. 1995, 6, 309. Copyright 1995 Elsevier B.V. Schematic of an electrospray system. In order to prevent droplet explosion during evaporation of aerosol droplets, the highly charged aerosol is passed through a radioactive neutralizer before evaporation occurs. Reproduced with permission from Chen, X. Hu, X. Feng, J. Nanostruct. Mater. 1995, 6, 309. Copyright 1995 Elsevier B.V.
Water-in-od emulsion explosives have been made as typified by a formulation containing 20% water, 12% oil, 2% microspheres, 1% emulsifier, and 65% ammonium nitrate. The micro droplets of an emulsion explosive offer the advantage of intimate contact between fuel and oxidizer, and tend to equal or outperform conventional water-based slurries. [Pg.24]

Ammonia from coal gasification has been used for fertilizer production at Sasol since the beginning of operations in 1955. In 1964 a dedicated coal-based ammonia synthesis plant was brought on stream. This plant has now been deactivated, and is being replaced with a new faciUty with three times the production capacity. Nitric acid is produced by oxidation and is converted with additional ammonia into ammonium nitrate fertilizers. The products are marketed either as a Hquid or in a soHd form known as Limestone Ammonium Nitrate. Also, two types of explosives are produced from ammonium nitrate. The first is a mixture of fuel oil and porous ammonium nitrate granules. The second type is produced by emulsifying small droplets of ammonium nitrate solution in oil. [Pg.168]

Other. Because a foam consists of many small, trapped gas bubbles, it can be very effective as a thermal insulator. Usually soHd foams are used for insulation purposes, but there are some instances where Hquid foams also find uses for insulation (see Eoamed plastics Insulation, thermal). Eor example, it is possible to apply and remove the insulation simply by forming or coUapsing the foam, providing additional control of the insulation process. Another novel use that is being explored is the potential of absorbing much of the pressure produced by an explosion. The energy in the shock wave is first partially absorbed by breaking the bubbles into very small droplets, and then further absorbed as the droplets are evaporated (53). [Pg.432]

The iodine compound is more stable and separates as so-called nitrogen trHodide monoammoniate [14014-86-9], NI NH, an insoluble brownish-black soHd, which decomposes when exposed to light in the presence of ammonia. In reactions of the halogens with the respective ammonium salts, however, the action is different. Chlorine replaces hydrogen and nitrogen chloride [10025-85-1], NCl, separates as oily, yeUow droplets capable of spontaneous explosive decomposition. [Pg.338]

Liquid mists of ethylene oxide will decompose explosively in the same manner as the vapor. Burning rate increases with decreased droplet size. [Pg.465]

Electric cyclones, which utilize an electrode in the center of the cyclone to establish an electric field within the cyclone body. This device is more efficient than the standard cyclone. It is probably more applicable to mists and droplets than to dry particulates, due to possible fire or explosion hazards with combustible dusts. [Pg.477]

Another theory of liquid-liquid explosion comes from Board et al. (1975). They noticed that when an initial disturbance, for example, at the vapor-liquid interface, causes a shock wave, some of the liquid is atomized, thus enhancing rapid heat transfer to the droplets. This action produces further expansion and atomization. When the droplets are heated to a temperature equal to the superheat temperature limit, rapid evaporation (flashing liquid) may cause an explosion. In fact, this theory resembles the theory of Reid (1979), except that only droplets, and not bulk liquid, have to be at the superheat temperature limit of atmospheric pressure (McDevitt et al. 1987). [Pg.160]

When a flammable liquid is sprayed as fine droplets into the air, a flammable mixture can result, which may burn or explode. The mist or spray may be formed by condensation of saturated vapors or by mechanical means [40]. As the particle sizes of the liquid become greater than 0.01 mm diameter, the lower flammability limit of the material becomes lower while above 0.01 mm, the LEL is about the same as the vapor. Mechanical engine crankcase explosions of oil mist in air are hazardous, and current practice is to apply explosion relief valves to the crankcase. [Pg.505]

Fig. 6.18 Scheme of explosive boiling J micro-channel, 2 main area of visual observation, 3 ONB point, 4 elongated cylindrical bubble, 5 liquid in front of the bubble, 6 vapor, 7 liquid droplets and clusters. Reprinted from Hetsroni et al. (2005) with permission... [Pg.282]

A series of such explosions then takes place until a point is reached at which ions of the appropriate analytes dissolved in these droplets are produced and are transferred through a series of focusing devices (lenses) into the mass spectrometer. [Pg.159]

According to the ion-evaporation model, the droplets become smaller until a point is reached at which the surface charge is sufficiently high for direct ion evaporation into the gas phase to occur. In the case of the charge-residue model, repeated Coulombic explosions take place until droplets are formed that contain a single ion. Evaporation of the solvent continues until an ion is formed in the vapour phase. [Pg.159]

Coulombic explosion The process by which a droplet disintegrates into a number of smaller droplets which occurs when the repulsive forces between charges on the surface of a droplet are greater than the cohesive force of surface tension. [Pg.304]

Boiling liquid expanding vapour explosions occur when there is a sudden release of vapour, containing liquid droplets, due to the failure of a storage vessel exposed to fire. A serious incident involving the failure of a LPG (Liquified Petroleum Gas) storage sphere occurred at Feyzin, France, in 1966, when the tank was heated by an external fire fuelled by a leak from the tank see Lees (1996) and Marshall (1987). [Pg.366]

A different scenario involving these three occurred when lightning struck an aluminium foundry. It is supposed that this dispersed molten metal droplets in air, which then exploded with the estimated force of 200 kg TNT, causing damage which allowed remaining molten metal to fall into the wet casting pit, producing a second explosion of half the power of the first [2],... [Pg.28]

Research on water explosion inhibiting systems is providing an avenue of future protection possibilities against vapor cloud explosions. British Gas experimentation on the mitigation of explosions by water sprays, shows that flame speeds of an explosion may be reduced by this method. The British Gas research indicates that small droplet spray systems can act to reduce the rate of flame speed acceleration and therefore the consequential damage that could be produced. Normal water deluge systems appear to produce too large a droplet size to be effective in explosion flame speed retardation and may increase the air turbulence in the areas. [Pg.162]

Fig. 11.5. Diagram illustrating the components of an ESI source. A solution from a pump or the eluent from an HPLC is introduced through a narrow gage needle (approximately 150 pm i.d.). The voltage differential (4-5 kV) between the needle and the counter electrode causes the solution to form a fine spray of small charged droplets. At elevated flow rates (greater than a few pl/min up to 1 ml/min), the formation of droplets is assisted by a high velocity flow of N2 (pneumatically assisted ESI). Once formed, the droplets diminish in size due to evaporative processes and droplet fission resulting from coulombic repulsion (the so-called coulombic explosions ). The preformed ions in the droplets remain after complete evaporation of the solvent or are ejected from the droplet surface (ion evaporation) by the same forces of coulombic repulsion that cause droplet fission. The ions are transformed into the vacuum envelope of the instrument and to the mass analyzer(s) through the heated transfer tube, one or more skimmers and a series of lenses. Fig. 11.5. Diagram illustrating the components of an ESI source. A solution from a pump or the eluent from an HPLC is introduced through a narrow gage needle (approximately 150 pm i.d.). The voltage differential (4-5 kV) between the needle and the counter electrode causes the solution to form a fine spray of small charged droplets. At elevated flow rates (greater than a few pl/min up to 1 ml/min), the formation of droplets is assisted by a high velocity flow of N2 (pneumatically assisted ESI). Once formed, the droplets diminish in size due to evaporative processes and droplet fission resulting from coulombic repulsion (the so-called coulombic explosions ). The preformed ions in the droplets remain after complete evaporation of the solvent or are ejected from the droplet surface (ion evaporation) by the same forces of coulombic repulsion that cause droplet fission. The ions are transformed into the vacuum envelope of the instrument and to the mass analyzer(s) through the heated transfer tube, one or more skimmers and a series of lenses.
The decrease in the mean droplet size with increasing liquid injection pressure may be attributed to two effects. First, the high pressure-drop across the exit orifice makes the process more like a pressure atomization at high pressure. Second, the liquid is squeezed into fine ligaments as it flows through the injector orifice, and the ligaments are shattered into small droplets by the explosion downstream of the nozzle exit. [Pg.275]


See other pages where Droplet explosion is mentioned: [Pg.21]    [Pg.22]    [Pg.18]    [Pg.1144]    [Pg.542]    [Pg.169]    [Pg.1171]    [Pg.21]    [Pg.22]    [Pg.18]    [Pg.1144]    [Pg.542]    [Pg.169]    [Pg.1171]    [Pg.278]    [Pg.59]    [Pg.102]    [Pg.396]    [Pg.530]    [Pg.83]    [Pg.135]    [Pg.376]    [Pg.785]    [Pg.158]    [Pg.247]    [Pg.506]    [Pg.184]    [Pg.50]    [Pg.137]    [Pg.338]    [Pg.48]    [Pg.12]   
See also in sourсe #XX -- [ Pg.21 ]




SEARCH



Charged droplet explosion

© 2024 chempedia.info